Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Tackling Limited Labeled Field Data Challenges for State of Health Estimation of Lithium-Ion Batteries by Advanced Semi-Supervised Regression

2024-04-09
2024-01-2200
Accurate estimation of battery state of health (SOH) has become indispensable in ensuring the predictive maintenance and safety of electric vehicles (EVs). While supervised machine learning excels in laboratory settings with adequate SOH labels, field-based SOH data collection for supervised learning is hindered by EVs' complex conditions and prohibitive data collection costs. To overcome this challenge, a battery SOH estimation method based on semi-supervised regression is proposed and validated using field data in this paper. Initially, the Ampere integral formula is employed to calculate SOH labels from charging data, and the error of labeled SOH is reduced by the open-circuit voltage correction strategy. The calculation error of the SOH label is confirmed to be less than 1.2%, as validated by the full-charge test of the battery packs.
Technical Paper

A Structured Approach to the Development of a Logical Architecture for the Automotive Industry

2024-04-09
2024-01-2048
The automotive industry is currently experiencing a massive transformation, one like it has not quite seen in the past. With the advent of highly software-driven, always on, connected vehicles, the automotive industry is experiencing itself at a crossroads. While the traditional component-driven design approach to vehicle development worked in the favor of the industry for decades due to vehicles being mostly mechanical in nature, the industry now finds itself struggling to develop well-integrated vehicle solutions with the large dependency on software systems. The fast-paced nature of the software world makes it imperative to approach the development of automobiles from a Systems Engineering perspective. A function-based approach to the development of vehicle architectures can ensure cohesive systems development and a well-integrated vehicle.
Technical Paper

Modelling and Analysis of a Cooperative Adaptive Cruise Control (CACC) Algorithm for Fuel Economy

2024-04-09
2024-01-2564
Connectivity in ground vehicles allows vehicles to share crucial vehicle data, such as vehicle acceleration and speed, with each other. Using sensors such as radars and lidars, on the other hand, the intravehicular distance between a leader vehicle and a host vehicle can be detected. Cooperative Adaptive Cruise Control (CACC) builds upon ground vehicle connectivity and sensor information to form convoys with automated car following. CACC can also be used to improve fuel economy and mobility performance of vehicles in the said convoy. In this paper, a CACC system is presented, where the acceleration of the lead vehicle is used in the calculation of desired vehicle speed. In addition to the smooth car following abilities, the proposed CACC also has the capability to calculate a speed profile for the ego vehicle that is fuel efficient, making it an Ecological CACC (Eco-CACC) model.
Technical Paper

Vehicle Seat Occupancy Detection and Classification Using Capacitive Sensing

2024-04-09
2024-01-2508
Improving passenger safety inside vehicle cabins requires continuously monitoring vehicle seat occupancy statuses. Monitoring a vehicle seat’s occupancy status includes detecting if the seat is occupied and classifying the seat’s occupancy type. This paper introduces an innovative non-intrusive technique that employs capacitive sensing and an occupancy classifier to monitor a vehicle seat’s occupancy status. Capacitive sensing is facilitated by a meticulously constructed capacitance-sensing mat that easily integrates with any vehicle seat. When a passenger or an inanimate object occupies a vehicle seat equipped with the mat, they will induce variations in the mat’s internal capacitances. The variations are, in turn, represented pictorially as grayscale capacitance-sensing images (CSI), which yield the feature vectors the classifier requires to classify the seat’s occupancy type.
Technical Paper

Dynamic Simulation of Steering Crimp Ring Assembly Process Using CAE and its Correlation with Testing

2024-04-09
2024-01-2733
The process of assembling the bearing and crimp ring to the steering pinion shaft is intricate. The bearing is pressed into its position via the crimp ring, which is tipped inward and fully fitted into a groove on the pinion shaft. Only when the bearing is pressed to a low surface on the pinion shaft, the caulking force for the crimp ring is achieved. The final caulking distance for the crimp ring confirms the proper bearing position. Simulating this transient fitting process using CAE is a challenging topic. Key factors include controlling applied force, defining contact between bearing and pinion surface, and defining contact between crimp ring and bearing surface from full close to half open transition. The overall CAE process is validated through correlation with testing.
Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Technical Paper

CFD Simulation of Visor for cleaning Autonomous Vehicle sensors: Focus on a Roof Mounted Lidar

2024-04-09
2024-01-2526
The performance of autonomous vehicle (AV) sensors, such as lidars or cameras, is often hindered during rain. Rain droplets on the AV sensors can cause beam attenuation and backscattering, which in turn causes inaccurate sensor readings and misjudgment by AV algorithms. Most AV systems are equipped with cleaning systems to remove contaminants, such as rain, from AV sensors. One such mechanism is to blow high-speed air over the AV sensors. However, the cleaning air can be hindered by incoming headwind, especially at higher vehicle speeds. An innovative idea proposed here is to use a visor to improve the cleaning performance of AV cleaning systems at higher vehicle speeds. The effectiveness of a baseline visor design was studied using computational fluid dynamics (CFD) air flow analysis and Lagrangian rain droplet tracking. The baseline visor improved the AV sensor cleaning performance in two ways. First, the visor protects the cleaning air flow from being disturbed by headwind.
Technical Paper

Method of Improving Slam Durability Fatigue of Vehicle Liftgate Subsystem for Fast-Track Vehicle Development Cycle

2024-01-16
2024-26-0302
With reference to present literature, most OEMs are working on reducing product development time by around ~20%, through seamless integration of digital ecosystem and focusing on dynamic customer needs. The Systems Engineering approach focuses on functions & systems rather than components. In this approach, designers (Computer Aided Design) / analysts (Computer Aided Engineering) need to understand program requirements early to enable seamless integration. This approach also reduces the number of iterative loops between cross functions thereby reducing the development cycle time. In this paper, we have attempted to tackle a common challenge faced by Closures (Liftgate) engineering: meeting slam durability fatigue life while replicating customer normal and abusive closing behavior.
Technical Paper

Application of the Design of Experiments to Study the Sensitivity and Contribution of a Seat Back Bladder Bolster on Occupant Lateral Support Performance

2024-01-16
2024-26-0303
Automotive seat comfort systems provide occupants with a choice to adjust the seat to individual preference, enhancing the customized comfort feel. Seat comfort systems such as massager, lumbar support bladders, seat cushion bolster bladders and seat back bolster bladders are increasingly adopted in automotive seats as customer demand for customizable seats is on the rise. Development of seat comfort systems is mainly driven by Tier 1 suppliers to an automotive original equipment manufacturer (OEM). The Automotive OEM must wait until the final seat prototype is ready with all the seat comfort systems packaged to evaluate the seat comfort performance. Computer Aided Engineering (CAE) Tools like CASIMIR provide detail dummies representing humans with tissues and muscles, allowing occupant seat comfort to be predicted virtually.
Technical Paper

Connected Vehicle Data Applied to Feature Optimization and Customer Experience Improvement

2024-01-08
2023-36-0109
In a recent time, which new vehicle lines comes with a huge number of sensors, control units, embedded technologies, and the complexity of these systems (electronics, electrical and electromechanical parts) increases in an exponential way. Considering these events, the expressive generated data amount grows in the same pace, so, consume, transform, and analyze all these data to better understand the modern customer, their needs and how they use the car features becomes necessary. Through that scenario, connected vehicles developed by Ford Motor Company has been generating opportunities to feature’s improvement and cost reduction based on data analysis. This growing quantity of data might be used to optimize feature systems and help engineering teams to understand how the features have been used and enhance the systems engineering design for new or existing features.
Technical Paper

Driving Towards a Sustainable Future: Leveraging Connected Vehicle Data for Effective Carbon Emission Management

2024-01-08
2023-36-0145
The rise of greenhouse gas emissions has reached historic levels, with 37 billion tons of CO2 released into the atmosphere in 2018 alone. In the European Union, 32% of these emissions come from transportation, with 73.3% of that percentage coming from vehicles. To address this problem, solutions such as cleaner fuels and more efficient engines are necessary. Artificial Intelligence can also play a crucial role in climate analysis and verification to move towards a more sustainable future. By utilizing connected vehicle data, automakers can analyze real-time vehicle performance data to identify opportunities for improvement and reduce carbon emissions. This approach benefits the environment, improves vehicle quality, and reduces engineering work time, making it a win-win solution. Connected vehicle data offers a wealth of information on vehicle performance, such as fuel consumption and carbon emissions.
Technical Paper

Potential Application of Rubber-Graphene Compounds in the Automotive Parts

2024-01-08
2023-36-0028
Rubber is one of the most used materials currently selected to produce automotive parts, but, for specific applications, some improvement is required in its properties through the addition of some components to the rubber compound formulation. Because of that, mechanical, thermal, and chemical properties are enhanced in order to meet strict requirements of the vast range of application of the rubber compounds. In addition to improving material properties, the combination of different substances, also aims to improve processability and reduce the costs of the final product. Recently, the use of nanofillers has been very explored because of their distinctive properties and characteristics. Among the nanofillers under study, graphene is known for its high-barrier property, thermal and electrical conductivities, and good mechanical properties.
Technical Paper

Connected Vehicle Data – Prognostics and Monetization Opportunity

2023-10-31
2023-01-1685
In recent years, the automotive industry has seen an exponential increase in the replacement of mechanical components with electronic-controlled components or systems. engine, transmission, brake, exhaust gas recirculation (EGR), lighting, driver-assist technologies, etc. are all monitored and/or controlled electronically. Connected vehicles are increasingly being used by Original Equipment Manufacturers (OEMs) to collect and transmit vehicle data in real-time via the use of various sensors, actuators, and communication technologies. Vehicle telematics devices can collect and transmit data about the vehicle location, speed, fuel efficiency, State Of Charge (SOC), auxiliary battery voltage, emissions, performance, and more. This data is sent over to the cloud via cellular networks, where it can be processed and analyzed to improve their products and services by automotive companies and/or fleet management.
Technical Paper

Time-Domain Explicit Dynamic CAE Simulation for Brake Squeal

2023-05-08
2023-01-1061
Disc brake squeal is always a challenging multidisciplinary problem in vehicle noise, vibration, and harshness (NVH) that has been extensively researched. Theoretical analysis has been done to understand the mechanism of disc brake squeal due to small disturbances. Most studies have used linear modal approaches for the harmonic vibration of large models. However, time-domain approaches have been limited, as they are restricted to specific friction models and vibration patterns and are computationally expensive. This research aims to use a time-domain approach to improve the modeling of brake squeal, as it is a dynamic instability issue with a time-dependent friction force. The time-domain approach has been successfully demonstrated through examples and data.
Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Technical Paper

Verification of Driver Status Monitoring Camera Position Using Virtual Knowledge-Based Engineering

2023-04-11
2023-01-0090
A DMS (Driver Monitoring System) is one of the most important safety features that assist in the monitoring functions and alert drivers when distraction or drowsiness is detected. The system is based in a DSMC (Driver Status Monitoring Camera) mounted in the vehicle's dash, which has a predefined set of operational requirements that must be fulfilled to guarantee the correct operation of the system. These conditions represent a trade space analysis challenge for each vehicle since both the DSMC and the underlying vehicle’s requirements must be satisfied. Relying upon the camera’s manufacturer evaluation for every iteration of the vehicle’s design has proven to be time-consuming, resources-intensive, and ineffective from the decision-making standpoint.
Technical Paper

Model Based Systems Engineering Application in Automotive Industry

2023-04-11
2023-01-0091
Auto industry has faced constant challenges in the economic, technology and global trend in the recent years. This is changing the corporative mindset to find creative and innovative processes and methods to evolve the product development system to adjust and deliver competitive products that satisfy customers expectations. Integrating the work from different teams in an organization has been moving from simple roles and responsibilities definition with effective communication channels to a new vision where teamwork progresses in harmony and embraces change to satisfy customers as part of the process. The path to evolve work in engineering that relies on several computational tools continues. In this article, it is presented an integration of different tools to manage vehicle program changes using model-based systems engineering, the present work improves the reaction capabilities of the teams and enables to adjust to changes in the development of a vehicle.
Technical Paper

Hierarchical Decentralized Model Predictive Control for Multi-Stack Fuel Cell Vehicles Using Driving Cycle Data

2023-04-11
2023-01-0178
The energy management strategy, commonly known as the EMS, is an essential component of fuel cell cars (FCVs). The majority of current research is concentrated on centralized emergency management systems (Cen-EMSs), but it does not provide sufficient flexibility (plug-and-play) or robustness. Regarding this matter, a hierarchical decentralized energy management system (Dec-EMS) that is based on a model predictive control (MPC) technique is offered for a modular FCV powertrain that is comprised of two parallel proton exchange membrane fuel cells (PEMFC) and an energy storage system. Gain scheduling makes the proposed Dec-EMS controller more effective in terms of its performance. The hierarchical decentralized control approach is assessed within the framework of a driving scenario that is representative of real-world conditions. According to the numerical result, the decentralized emergency management system (Dec-EMS) proposal provides superior performance than the centralized approach.
Technical Paper

Intersection Signal Control Based on Speed Guidance and Reinforcement Learning

2023-04-11
2023-01-0721
As a crucial part of the intelligent transportation system, traffic signal control will realize the boundary control of the traffic area, it will also lead to delays and excessive fuel consumption when the vehicle is driving at the intersection. To tackle this challenge, this research provides an optimized control framework based on reinforcement learning method and speed guidance strategy for the connected vehicle network. Prior to entering an intersection, vehicles are focused on in a specific speed guidance area, and important factors like uniform speed, acceleration, deceleration, and parking are optimized. Conclusion, derived from deep reinforcement learning algorithm, the summation of the length of the vehicle’s queue in front of the signal light and the sum of the number of brakes are used as the reward function, and the vehicle information at the intersection is collected in real time through the road detector on the road network.
X