Refine Your Search

Topic

Author

Search Results

Technical Paper

An Ultra-Light Heuristic Algorithm for Autonomous Optimal Eco-Driving

2023-04-11
2023-01-0679
Connected autonomy brings with it the means of significantly increasing vehicle Energy Economy (EE) through optimal Eco-Driving control. Much research has been conducted in the area of autonomous Eco-Driving control via various methods. Generally, proposed algorithms fall into the broad categories of rules-based controls, optimal controls, and meta-heuristics. Proposed algorithms also vary in cost function type with the 2-norm of acceleration being common. In a previous study the authors classified and implemented commonly represented methods from the literature using real-world data. Results from the study showed a tradeoff between EE improvement and run-time and that the best overall performers were meta-heuristics. Results also showed that cost functions sensitive to the 1-norm of acceleration led to better performance than those which directly minimize the 2-norm.
Research Report

Automated Vehicles, the Driving Brain, and Artificial Intelligence

2022-11-16
EPR2022027
Automated driving is considered a key technology for reducing traffic accidents, improving road utilization, and enhancing transportation economy and thus has received extensive attention from academia and industry in recent years. Although recent improvements in artificial intelligence are beginning to be integrated into vehicles, current AD technology is still far from matching or exceeding the level of human driving ability. The key technologies that need to be developed include achieving a deep understanding and cognition of traffic scenarios and highly intelligent decision-making. Automated Vehicles, the Driving Brain, and Artificial Intelligenceaddresses brain-inspired driving and learning from the human brain's cognitive, thinking, reasoning, and memory abilities. This report presents a few unaddressed issues related to brain-inspired driving, including the cognitive mechanism, architecture implementation, scenario cognition, policy learning, testing, and validation.
Research Report

Automated Vehicles: A Human/Machine Co-learning Perspective

2022-04-27
EPR2022009
Automated vehicles (AVs)—and the automated driving systems (ADSs) that enable them—are increasing in prevalence but remain far from ubiquitous. Progress has occurred in spurts, followed by lulls, while the motor transportation system learns to design, deploy, and regulate AVs. Automated Vehicles: A Human/Machine Co-learning Experience focuses on how engineers, regulators, and road users are all learning about a technology that has the potential to transform society. Those engaged in the design of ADSs and AVs may find it useful to consider that the spurts and lulls and stakeholder tussles are a normal part of technology transformations; however, this report will provide suggestions for effective stakeholder engagement. Click here to access the full SAE EDGETM Research Report portfolio.
Research Report

Unsettled Issues Facing Automated Vehicles and Insurance

2020-08-05
EPR2020015
This SAE EDGE™ Research Report explores how the deployment of automated vehicles (AVs) will affect the insurance industry and the principles of liability that underly the structure of insurance in the US. As we trade human drivers for suites of sensors and computers, who (or what) is responsible when there is a crash? The owner of the vehicle? The automaker that built it? The programmer that wrote the code? Insurers have over 100 years of experience and data covering human drivers, but with only a few years’ worth of information on AVs – how can they properly predict the true risks associated with their deployment? Without an understanding of the nature and risks of AVs, how can the government agencies that regulate the insurance industry provide proper oversight? Do the challenges AVs present require a total reworking of our insurance and liability systems, or can our current structures be adapted to fit them with minor modifications?
Technical Paper

A Dynamic Trajectory Planning for Automatic Vehicles Based on Improved Discrete Optimization Method

2020-04-14
2020-01-0120
The dynamic trajectory planning problem for automatic vehicles in complex traffic scenarios is investigated in this paper. A hierarchical motion planning framework is developed to complete the complex planning task. An improved dangerous potential field in the curvilinear coordinate system is constructed to describe the collision risk of automatic vehicles accurately instead of the discrete Gaussian convolution algorithm. At the same time, the driving comfort is also considered in order to generate an optimal, smooth, collision-free and feasible path in dynamics. The optimal path can be mapped into the Cartesian coordinate system simply and conveniently. Furthermore, a velocity profile considering practical vehicle dynamics is also presented to improve the safety and the comfort in driving. The effectiveness of the proposed dynamic trajectory planning is verified by numerical simulation for several typical traffic scenarios.
Technical Paper

Research on Factors to Influence Coasting Resistance for Electric Vehicles

2020-04-14
2020-01-1068
The research on coasting resistance is vital to electric vehicles, since the smaller the coasting resistance, the longer the coast-down distance. Vehicle coast resistance consists of rolling resistance, vehicle inner resistance and the aerodynamic drag. The vehicle inner resistance is mainly caused by driveline’s friction loss and oil splash loss. The rolling resistance is decided by tire resistance coefficient, which is influenced by tires and road conditions. And the aerodynamic drag is affected by vehicle’s shape and air. In this paper, four factors including tire pressure, road surface condition, atmosphere temperature, and recirculation on or off are examined. Experimental tests have been conducted on three different vehicles: one subcompact sedan, one compact sedan and one subcompact SUV. Then experimental results have been imported to simulation model to investigate the corresponding influence on NEDC range.
Research Report

Unsettled Legal Issues Facing Automated Vehicles

2020-02-28
EPR2020005
This SAE EDGE Research Report explores the many legal issues raised by the advent of automated vehicles. While promised to bring major changes to our lives, there are significant legal challenges that have to be overcome before they can see widespread use. A century’s worth of law and regulation were written with only human drivers in mind, meaning they have to be amended before machines can take the wheel. Everything from key federal safety regulations down to local parking laws will have to shift in the face of AVs. This report undertakes an examination of the AV laws of Nevada, California, Michigan, and Arizona, along with two failed federal AV bills, to better understand how lawmakers have approached the technology. States have traditionally regulated a great deal of what happens on the road, but does that still make sense in a world with AVs? Would the nascent AV industry be able to survive in a world with fifty potential sets of rules?
Technical Paper

A Dynamic Local Trajectory Planning and Tracking Method for UGV Based on Optimal Algorithm

2019-04-02
2019-01-0871
UGV (Unmanned Ground Vehicle) is gaining increasing amounts of attention from both industry and academic communities in recent years. Local trajectory planning is one of the most important parts of designing a UGV. However, there has been little research into local trajectory planning and tracking, and current research has not considered the dynamic of the surrounding environment. Therefore, we propose a dynamic local trajectory planning and tracking method for UGV driving on the highway in this paper. The method proposed in this paper can make the UGV travel from the navigation starting point to the navigation end point without collision on both straight and curve road. The key technology for this method is trajectory planning, trajectory tracking and trajectory update signal generation. Trajectory planning algorithm calculates a reference trajectory satisfying the demands of safety, comfort and traffic efficiency.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Technical Paper

Voronoi Partitions for Assessing Fuel Consumption of Advanced Technology Engines: An Approximation of Full Vehicle Simulation on a Drive Cycle

2018-04-03
2018-01-0317
This paper presents a simple method of using Voronoi partitions for estimating vehicle fuel economy from a limited set of engine operating conditions. While one of the overarching goals of engine research is to continually improve vehicle fuel economy, evaluating the impact of a change in engine operating efficiency on the resulting fuel economy is a non-trivial task and typically requires drive cycle simulations with experimental data or engine model predictions and a full suite of engine controllers over a wide range of engine speeds and loads. To avoid the cost of collecting such extensive data, proprietary methods exist to estimate fuel economy from a limited set of engine operating conditions. This study demonstrates the use of Voronoi partitions to cluster and quantize the fuel consumed along a complex trajectory in speed and load to generate fuel consumption estimates based on limited simulation or experimental results.
Technical Paper

Experimental Study of Post Injection Scheduling for Soot Reduction in a Light-Duty Turbodiesel Engine

2016-04-05
2016-01-0726
This experimental study involves optimization of the scheduling of diesel post injections to reduce soot emissions from a light-duty diesel engine. Previous work has shown that certain post injection schedules can reduce engine-out soot emissions when compared to conventional injection schedules for the same engine load. The purpose of this study is to investigate the impact of post injection scheduling for a range of engine conditions on a light duty multicylinder turbodiesel engine (1.9L GM ZDTH). For each engine operating condition, a test grid was developed so that only two variables (post injection duration and the commanded dwell time between main injection and post injection) were varied, with all other conditions held constant, in order to isolate the effects of the post injection schedule. Results have identified two distinct regimes of post injection schedules that reduce soot emissions.
Journal Article

Research on Validation Metrics for Multiple Dynamic Response Comparison under Uncertainty

2015-04-14
2015-01-0443
Computer programs and models are playing an increasing role in simulating vehicle crashworthiness, dynamic, and fuel efficiency. To maximize the effectiveness of these models, the validity and predictive capabilities of these models need to be assessed quantitatively. For a successful implementation of Computer Aided Engineering (CAE) models as an integrated part of the current vehicle development process, it is necessary to develop objective validation metric that has the desirable metric properties to quantify the discrepancy between multiple tests and simulation results. However, most of the outputs of dynamic systems are multiple functional responses, such as time history series. This calls for the development of an objective metric that can evaluate the differences of the multiple time histories as well as the key features under uncertainty.
Journal Article

Methods in Vehicle Mass and Road Grade Estimation

2014-04-01
2014-01-0111
Dynamic vehicle loads play critical roles for automotive controls including battery management, transmission shift scheduling, distance-to-empty predictions, and various active safety systems. Accurate real-time estimation of vehicle loads such as those due to vehicle mass and road grade can thus improve safety, efficiency, and performance. While several estimation methods have been proposed in literature, none have seen widespread adoption in current vehicle technologies despite their potential to significantly improve automotive controls. To understand and bridge the gap between research development and wider adoption of real-time load estimation, this paper assesses the accuracy and performance of four estimation methods that predict vehicle mass and/or road grade.
Technical Paper

A Research on the Body-in-White (BIW) Weight Reduction at the Conceptual Design Phase

2014-04-01
2014-01-0743
Vehicle weight reduction has become one of the essential research areas in the automotive industry. It is important to perform design optimization of Body-in-White (BIW) at the concept design phase so that to reduce the development cost and shorten the time-to-market in later stages. Finite Element (FE) models are commonly used for vehicle design. However, even with increasing speed of computers, the simulation of FE models is still too time-consuming due to the increased complexity of models. This calls for the development of a systematic and efficient approach that can effectively perform vehicle weight reduction, while satisfying the stringent safety regulations and constraints of development time and cost. In this paper, an efficient BIW weight reduction approach is proposed with consideration of complex safety and stiffness performances. A parametric BIW FE model is first constructed, followed by the building of surrogate models for the responses of interest.
Technical Paper

Understanding Work Task Assessment Sensitivity to the Prediction of Standing Location

2011-04-12
2011-01-0527
Digital human models (DHM) are now widely used to assess worker tasks as part of manufacturing simulation. With current DHM software, the simulation engineer or ergonomist usually makes a manual estimate of the likely worker standing location with respect to the work task. In a small number of cases, the worker standing location is determined through physical testing with one or a few workers. Motion capture technology is sometimes used to aid in quantitative analysis of the resulting posture. Previous research has demonstrated the sensitivity of work task assessment using DHM to the accuracy of the posture prediction. This paper expands on that work by demonstrating the need for a method and model to accurately predict worker standing location. The effect of standing location on work task posture and the resulting assessment is documented through three case studies using the Siemens Jack DHM software.
Journal Article

Driver Distraction/Overload Research and Engineering: Problems and Solutions

2010-10-19
2010-01-2331
Driver distraction is a topic of considerable interest, with the public debate centering on the use of cell phones and texting while driving. However, the driver distraction/overload issue is really much larger. It concerns specific tasks such as entering destinations on navigation systems, retrieving songs on MP3 players, accessing web pages, checking stocks, editing spreadsheets, and performing other tasks on smart phones, as well as, more generally, using in-vehicle information systems. Five major problems related to distraction/overload research and engineering and their solutions are addressed in this paper.
Technical Paper

Efficient Batteries for Transportation Applications

2008-10-20
2008-21-0017
This paper reviews and analyzes the current and future battery technologies suitable for transportation applications. The success of battery-enabled hybridization of gasoline and diesel power-trains in the past decade has clearly established it as the most credible alternative to the conventional propulsion systems. The current enthusiasm for electric vehicles further accentuates this success. In this paper, we compare the performance of a number of established and emerging battery technologies against the now well-established performance targets for electric-drive vehicles. Lithium-ion cells' superior performance and life are described, as are requirements for supplantation of NiMH cells in vehicles. Trends are discussed in technology development, which has largely been achieved through insertion of Li technologies in consumer electronics. Recent developments have given rise to several variants of the Li ion chemistry.
Technical Paper

Upper Body Coordination in Reach Movements

2008-06-17
2008-01-1917
A research scheme and preliminary results of a pilot study concerning upper body coordination in reach movements is presented. Techniques for multi-joint arm movements were used to obtain the kinematics of each body segment in reach movements to targets spatially distributed in a horizontal plane. Further understanding of the control mechanisms associated with coordination is investigated by combining the information of gaze orientation and body segment movements during reach activities. The implicit sequence of body segments in reach movement can be derived from their kinematic characteristics. Moreover, an identification of phases composing a reach movement is attempted.
Journal Article

Scheduling of Hand Movements in Bimanual Tasks

2008-06-17
2008-01-1916
This study investigates the organization of upper body coordination in tasks involving complex visual and manual demands. In the past, bimanual coordination has been approached in the context of symmetric or asymmetric interactions of the two hands. But routine behavior associated with work tasks requires synchronization in time and space of multiple components across multiple concurrent actions. Hence the problem of upper body coordination involves a combination of both symmetric and asymmetric modes of interaction, with a dynamic switching between the two. Although current models may explain the two modes of interaction individually, none of the existing models account for an integration of the two modes from the perspective of task performance. A pilot study was conducted in which subjects performed assembly tasks involving object transfers and manipulations with varying levels of visual and manual demands and performance constraints, such as speed and precision.
X