Refine Your Search

Topic

Search Results

Technical Paper

Assessing the Likelihood of Binding in Distorted Stepped Radius Cylinder Bores

2014-04-01
2014-01-0395
Interference assessments of a stepped-radius power-train component moving within a deformed stepped bore often arise during engine and transmission development activities. For example, when loads are applied to an engine block, the block distorts. This distortion may cause a cam or crankshaft to bind or wear prematurely in its journals as the part rotates within them. Within an automatic transmission valve body, care must be taken to ensure valve body distortion under oil pressure, assembly, and thermal load does not cause spool valves to stick as they translate within the valve body. In both examples, the mechanical scenario to be assessed involves a uniform or stepped radius cylindrical part maintaining a designated clearance through a correspondingly shaped but distorted bore. These distortions can occur in cross-sections (“out-of-round”) or along the bore (in an “s” or “banana” shaped distortions).
Technical Paper

Optimization of HVAC Panel Aiming Studies using Parametric Modeling and Automated Simulation

2014-04-01
2014-01-0684
In an Automotive air conditioning system, the air flow distribution in the cabin from the HVAC (Heating, ventilation and air conditioning), ducts and outlets is evaluated by the velocity achieved at driver and passenger mannequin aim points. Multiple simulation iterations are being carried out before finalizing the design of HVAC panel duct and outlets until the target velocity is achieved. In this paper, a parametric modeling of the HVAC outlet is done which includes primary and secondary vane creation using CATIA. Java macro files are created for simulation runs in STAR CCM+. ISIGHT is used as an interface tool between CATIA and STARCCM+. The vane limits of outlet and the target velocity to be achieved at mannequin aim points are defined as the boundary conditions for the analysis. Based on the optimization technique and the number of iterations defined in ISIGHT, the vane angle model gets updated automatically in CATIA followed by the simulation runs in STARCCM+.
Technical Paper

A Study on Body Panel Stress Analysis under Distributed Loads

2014-04-01
2014-01-0906
In this paper, four possible CAE analysis methods for calculating critical buckling load and post-buckling permanent deformation after unloading for geometry imperfection sensitive thin shell structures under uniformly distributed loads have been investigated. The typical application is a vehicle roof panel under snow load. The methods include 1) nonlinear static stress analysis, 2) linear Eigen value buckling analysis 3) nonlinear static stress analysis using Riks method with consideration of imperfections, and 4) implicit quasi-static nonlinear stress analysis with consideration of imperfections. Advantage and disadvantage of each method have been discussed. Correlations between each of the method to a physical test are also conducted. Finally, the implicit quasi-static nonlinear stress analysis with consideration of geometry imperfections that are scaled mode shapes from linear Eigen value buckling analysis is preferred.
Technical Paper

Vehicle Body Panel Thermal Buckling Resistance Analysis

2014-04-01
2014-01-0926
This paper discusses CAE simulation methods to predict the thermal induced buckling issues when vehicle body panels are subjected to the elevated temperature in e-coat oven. Both linear buckling analysis and implicit quasi-static analysis are discussed and studied using a quarter cylinder shell as an example. The linear buckling analysis could produce quick but non-conservative buckling temperature. With considering nonlinearity, implicit quasi-static analysis could predict a relative conservative critical temperature. In addition, the permanent deformations could be obtained to judge if the panel remains visible dent due to the buckling. Finally these two approaches have been compared to thermal bucking behavior of a panel on a vehicle going through thermal cycle of e-coat oven with the excellent agreement on its initial design and issue fix design. In conclusion, the linear buckling analysis could be used for quick thermal buckling evaluation and comparison on a series of proposals.
Technical Paper

A Technique to Predict Thermal Buckling in Automotive Body Panels by Coupling Heat Transfer and Structural Analysis

2014-04-01
2014-01-0943
This paper describes a comprehensive methodology for the simulation of vehicle body panel buckling in an electrophoretic coat (electro-coat or e-coat) and/or paint oven environment. The simulation couples computational heat transfer analysis and structural analysis. Heat transfer analysis is used to predict temperature distribution throughout a vehicle body in curing ovens. The vehicle body temperature profile from the heat transfer analysis is applied as an input for a structural analysis to predict buckling. This study is focused on the radiant section of the curing ovens. The radiant section of the oven has the largest temperature gradients within the body structure. This methodology couples a fully transient thermal analysis to simulate the structure through the electro-coat and paint curing environments with a structural, buckling analysis.
Technical Paper

Automotive Vehicle Body Temperature Prediction in a Paint Oven

2014-04-01
2014-01-0644
Automotive vehicle body electrophoretic (e-coat) and paint application has a high degree of complexity and expense in vehicle assembly. These steps involve coating and painting the vehicle body. Each step has multiple coatings and a curing process of the body in an oven. Two types of heating methods, radiation and convection, are used in the ovens to cure coatings and paints during the process. During heating stage in the oven, the vehicle body has large thermal stresses due to thermal expansion. These stresses may cause permanent deformation and weld/joint failure. Body panel deformation and joint failure can be predicted by using structural analysis with component surface temperature distribution. The prediction will avoid late and costly changes to the vehicle design. The temperature profiles on the vehicle components are the key boundary conditions used to perform structure analysis.
Journal Article

Modeling and Analysis of Powertrain NVH with Focus on Growl Noise

2013-05-13
2013-01-1875
Superior NVH performance is a key focus in the development of new powertrains. In recent years, computer simulations have gained an increasing role in the design, development, and optimization of powertrain NVH at component and system levels. This paper presents the results of a study carried out on a 4-cylinder in-line spark-ignition engine with focus on growl noise. Growl is a low frequency noise (300-700 Hz) which is primarily perceived at moderate engine speeds (2000-3000 rpm) and light to moderate throttle tip-ins. For this purpose, a coupled and fully flexible multi-body dynamics model of the powertrain was developed. Structural components were reduced using component mode synthesis and used to determine dynamics loads at various engine speeds and loading conditions. A comparative NVH assessment of various crankshaft designs, engine configurations, and in- cylinder gas pressures was carried out.
Journal Article

Statistical Considerations for Evaluating Biofidelity, Repeatability, and Reproducibility of ATDs

2013-04-08
2013-01-1249
Reliable testing of a mechanical system requires the procedures used for the evaluation to be repeatable and reproducible. However, it is never possible to exactly repeat or reproduce the tests that are used for evaluation. To overcome this limitation, a statistical evaluation procedure can generally be used. However, most of the statistical procedures use scalar values as input without the ability to handle vectors or time-histories. To overcome these limitations, two numerical/statistical methods for determining if the impact time-history response of a mechanical system is repeatable or reproducible are evaluated and elaborated upon. Such a system could be a vehicle, a biological human surrogate, an Anthropometric Test Device (ATD or dummy), etc. The responses could be sets of time-histories of accelerations, forces, moments, etc., of a component or of the system. The example system evaluated is the BioRID II rear impact dummy.
Technical Paper

Application of Modeling Technology in a Turbocharged SI Engine

2013-04-08
2013-01-1621
Improvements to 1D engine modeling accuracy and computational speed have led to greater reliance on this simulation technology during the engine development process. The benefits of modeling show up in many ways: increased simulation iterations for better optimization, reduction in prototype hardware iterations, reduction in program timing and overall cost. In this study a 1D GT-Power model of a turbocharged engine system was used to assist in the initial design phase and throughout the program. The model was developed using Chrysler Group LLC proprietary modeling features for predictive combustion and knock event prediction. In all stages of this project the model's accuracy was improved through regular correlation with dynamometer data. This paper mainly focuses on engine compression ratio selection, turbocharger selection, and cycle-to-cycle variation/cylinder-to-cylinder variation reduction through the combination of 1D GT-Power model optimization and dynamometer tests.
Technical Paper

Gasoline Combustion Modeling of Direct and Port-Fuel Injected Engines using a Reduced Chemical Mechanism

2013-04-08
2013-01-1098
A set of reduced chemical mechanisms was developed for use in multi-dimensional engine simulations of premixed gasoline combustion. The detailed Primary Reference Fuel (PRF) mechanism (1034 species, 4236 reactions) from Lawrence Livermore National Laboratory (LLNL) was employed as the starting mechanism. The detailed mechanism, referred to here as LLNL-PRF, was reduced using a technique known as Parallel Direct Relation Graph with Error Propagation and Sensitivity Analysis. This technique allows for efficient mechanism reduction by parallelizing the ignition delay calculations used in the reduction process. The reduction was performed for a temperature range of 800 to 1500 K and equivalence ratios of 0.5 to 1.5. The pressure range of interest was 0.75 bar to 40 bar, as dictated by the wide range in spark timing cylinder pressures for the various cases. In order to keep the mechanisms relatively small, two reductions were performed.
Technical Paper

EGR Systems Evaluation in Turbocharged Engines

2013-04-08
2013-01-0936
EGR systems are widely applied in modern turbocharged diesel engines to reduce engine-out emissions and will, or are being used to mitigate engine knock in SI engines for improved SI engine efficiency and power. In this paper, different EGR systems are detailed and evaluated theoretically based on the thermodynamics of a turbocharged system featuring an EGR sub-system. Turbine expansion ratio is utilized as a metric to estimate engine efficiency, i.e., pumping losses during the gas exchange process. Approaches such as compressor and turbine bypassing are evaluated as well. Based on above analysis, a new approach is put forward to expand the turbocharger work zone, particularly in the high efficiency regions by correctly utilizing EGR systems at all engine speed range: low-pressure loop EGR system at lower engine speed range and high-pressure loop EGR system at high engine speed range.
Technical Paper

Smart Meshing Template Process with CAD/CAE Link

2013-04-08
2013-01-0637
The benefits of utilizing virtual engineering include not only shortened product development time and reduced reliance on expensive physical testing, but also the opportunities for greater standardization to support higher product quality. This paper describes a project for building a smart meshing template with a CAD/CAE link. The objective of the project is to optimize the utilization of CAD software and CAE preprocessing software capabilities. The deliverable of the project is a cylinder head mesh template which meets all the cylinder head durability simulation meshing requirements, and which links to CAD/CAE software. Special surface areas identified are built into the cylinder head CAD model design. By using one of the features in CAD software, all the special surfaces can be automatically updated throughout the design process.
Journal Article

Idealized Vehicle Crash Test Pulses for Advanced Batteries

2013-04-08
2013-01-0764
This paper reports a study undertaken by the Crash Safety Working Group (CSWG) of the United States Council for Automotive Research (USCAR) to determine generic acceleration pulses for testing and evaluating advanced batteries subjected to inertial loading for application in electric passenger vehicles. These pulses were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used in this study. Crash test data, in terms of acceleration time histories, were collected from various crash modes conducted by the National Highway Traffic Safety Administration (NHTSA) during their New Car Assessment Program (NCAP) and Federal Motor Vehicle Safety Standards (FMVSS) evaluations, and the Insurance Institute for Highway Safety (IIHS).
Technical Paper

Windage Tray Design Comparison Using Crankcase Breathing Simulation

2013-04-08
2013-01-0580
The conflicting requirements of better fuel economy, higher performance and lower emissions from an automobile engine have brought many new challenges that require development teams to look beyond conventional test and seek answers from simulations. One of the relatively unexplored areas of development where frictional losses haven't been completely understood is the flow in the crankcase. Here computational engineering can play a significant role in analyzing flow field in a hidden and complex region where otherwise testing has serious limitations. Flow simulation in the crankcase poses significant complexity and provides an opportunity to enhance the understanding of underlying physics by using multi-physics analyses tools available commercially. In this study, air space under the piston and above the oil level in oil pan is simulated. It is known that bay-to-bay breathing and windage holes account for considerable amount of power losses in the crankcase.
Technical Paper

Crash Test Pulses for Advanced Batteries

2012-04-16
2012-01-0548
This paper reports a 2010 study undertaken to determine generic acceleration pulses for testing and evaluating advanced batteries for application in electric passenger vehicles. These were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used. The crash test data were gathered from the following test modes and sources: 1 Frontal rigid flat barrier test at 35 mph (NHTSA NCAP) 2 Frontal 40% offset deformable barrier test at 40 mph (IIHS) 3 Side moving deformable barrier test at 38 mph (NHTSA side NCAP) 4 Side oblique pole test at 20 mph (US FMVSS 214/NHTSA side NCAP) 5 Rear 70% offset moving deformable barrier impact at 50 mph (US FMVSS 301). The accelerometers used were from locations in the vehicle where deformation is minor or non-existent, so that the acceleration represents the “rigid-body” motion of the vehicle.
Journal Article

Hybrid III Head/Neck Analysis Highlighting Nij in NCAP

2012-04-16
2012-01-0102
Nij, a function of upper neck forces and moment, plays a dominant role in the vehicle's star rating under the new NHTSA NCAP front impact program. This is mainly due to an artifact in the mapping of the Nij into the “risk” value used in the star rating, and the fact that the neck region is not weighted appropriately to reflect its real world significance relative to the other body regions in the NCAP rating. New test data also show that compared with the 50th male driver Nij, the 5th female passenger Nij is significantly more challenging to contain and therefore it is more dominant in the star rating. This paper describes the Hybrid III dummy head and neck impact response and provides a method to determine the external force acting on the head. The force and its acting point on the head are determined from head acceleration, angular acceleration, and the upper neck forces.
Journal Article

Estimation of Individual Cylinder Fuel Air Ratios from a Switching or Wide Range Oxygen Sensor for Engine Control and On-Board Diagnosis

2011-04-12
2011-01-0710
The fuel air ratio imbalance between individual cylinders can result in poor fuel economy and severe exhaust emissions. Individual cylinder fuel air ratio control is one of the important techniques used to improve fuel economy and reduce exhaust emission. California Air Resources Board (CARB) also has required automotive manufacturers to equip with on-board diagnosis system for cylinder fuel air ratio imbalance detection starting in 2011. However, one of the most challenging tasks for the individual cylinder fuel air ratio control and cylinder imbalance diagnosis is how to retrieve the cylinder fuel air ratio information effectively at low cost. This paper presents a novel and practical signal processing based fuel air ratio estimation method for individual cylinder fuel air ratio balance control and on-board fuel air ratio imbalance diagnosis.
Technical Paper

Assessment Metric Identification and Evaluation for Side Airbag (SAB) Development

2011-04-12
2011-01-0257
This paper discusses steps for identifying, evaluating and recommending a quantifiable design metric or metrics for Side Airbag (SAB) development. Three functionally related and desirable attributes of a SAB are assumed at the onset, namely, effective SAB coverage, load distribution and efficient energy management at a controlled force level. The third attribute however contradicts the “banana shaped” force-displacement response that characterizes the ineffective energy management reality of most production SAB. In this study, an estimated ATD to SAB interaction energy is used to size and recommend desired force-deformation characteristic of a robust energy management SAB. The study was conducted in the following three phases and corresponding objectives: Phase 1 is a SAB assessment metric identification and estimation, using a uniform block attached to a horizontal impact machine.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Technical Paper

The Consequences of Average Curve Generation: Implications for Biomechanics Data

2010-11-03
2010-22-0001
One method of understanding the general mechanical response of a complex system such as a vehicle, a human surrogate, a bridge, a boat, a plane, etc., is to subject it to an input, such as an impact, and obtain the response time-histories. The responses can be accelerations, velocities, strains, etc. In general, when experiments of this type are run the responses are contaminated by sample-to-sample variation, test-to-test variability, random noise, instrumentation noise, and noise from unknown sources. One common method of addressing the noise in the system to obtain the underlying response is to run multiple tests on different samples that represent the same system and add them together obtaining an average. This functionally reduces the random noise. However, if the fundamental response of each sample is not the same, then it is not altogether clear what the average represents. It may not capture the underlying physics.
X