Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Model Free Time Delay Compensation for Damped Impedance Method Interfaced Power System Co-Simulation Testing

2023-10-31
2023-01-1600
The joint real-time co-simulation, which involves the virtual integration of laboratories located in different locations, is met with challenges, especially the communication latency or delay, which significantly affects co-simulation accuracy and system stability. The real-time power system co-simulation is particularly susceptible to these delays and could lose synchronism, which affects the simulation fidelity and limits dynamic and transient studies. This paper proposes a model-free framework for predicting and compensating delays in the virtual integration of real-time co-simulators through the damped impedance interface method to address this issue. The framework includes an improved co-simulation interface algorithm called the Damping Impedance Method (DIM) and a model-free predictor system designed to predict and compensate for delays without decomposing and reconstructing signals at coupling points.
Technical Paper

A Prognostic Based Control Framework for Hybrid Electric Vehicles

2022-03-29
2022-01-0352
Electrified transportation has received significant interest recently because of sustainable and clean energy goals. However, the degradation of electrical components such as energy storage systems raises system reliability and economic concerns. In this paper, a prognostic-based control strategy is proposed for hybrid electric vehicles (HEVs) to abate the degradation of energy systems. Degradation forecasting models of electrical components are developed to predict their degradation paths. The predicted results are then used to control HEVs in order to reduce the degradation of components.
Technical Paper

Fast Engine Torque Variation Compensation for HEVs Using Permanent Magnet Synchronous Motor and Explicit MPC

2021-04-06
2021-01-0718
This research proposes to leverage the fast response time of Permanent Magnet Synchronous Motors (PMSMs) to compensate for crank angle resolved engine torque variations caused by cycle-by-cycle combustion variations. This method reduces powertrain vibration and enables engine calibrations with high combustion variation that produces low fuel consumption. This research integrates a Field Oriented Control (FOC) strategy with an Explicit Model Predictive Control (EMPC) to trace previewed current references. The previewed current references are computed from the engine torque difference between predicted nominal operation and the measured torque output. This research reveals that the MPC can track a d-q current reference without overshoot, rendering current magnitude constraints unnecessary in the MPC formulation. A control rate penalty is used to tune the aggressiveness of transient voltage demand and meet with the DC voltage limit.
X