Refine Your Search

Topic

Author

Search Results

Technical Paper

Predictive Maintenance of a Ground Vehicle Using Digital Twin Technology

2024-04-09
2024-01-2867
The safety and reliability of ground vehicles is a motivating factor for periodic maintenance which includes fluids, lubrication, cleaning, repairs, and general observation of key subsystems. The scheduling of maintenance activities can occur at different rates such as daily, weekly, or perhaps operating time based on collected historical data and general guidelines. The availability of a digital twin (DT), which offers a virtual representation of the vehicle behavior, enables virtual system simulations for different operating cycles to explore the dynamic behavior. When field operating fleet data can be integrated with the digital twin estimates, then this supplemental information can be combined with the existing maintenance plan to provide a more comprehensive approach. In this paper, a digital twin with a statistical based predictive maintenance strategy is investigated for a wheeled military ground vehicle.
Technical Paper

Modeling & Validation of a Digital Twin Tracked Vehicle

2024-04-09
2024-01-2323
Digital twin technology has become impactful in Industry 4.0 as it enables engineers to design, simulate, and analyze complex systems and products. As a result of the synergy between physical and virtual realms, innovation in the “real twin” or actual product is more effectively fostered. The availability of verified computer models that describe the target system is important for realistic simulations that provide operating behaviors that can be leveraged for future design studies or predictive maintenance algorithms. In this paper, a digital twin is created for an offroad tracked vehicle that can operate in either autonomous or remote-control modes. Mathematical models are presented and implemented to describe the twin track and vehicle chassis governing dynamics. These components are interfaced through the nonlinear suspension elements and distributed bogies.
Technical Paper

Machine Learning Approach for Open Circuit Fault Detection and Localization in EV Motor Drive Systems

2024-04-09
2024-01-2790
Semiconductor devices in electric vehicle (EV) motor drive systems are considered the most fragile components with a high occurrence rate for open circuit fault (OCF). Various signal-based and model-based methods with explicit mathematical models have been previously published for OCF diagnosis. However, this proposed work presents a model-free machine learning (ML) approach for a single-switch OCF detection and localization (DaL) for a two-level, three-phase inverter. Compared to already available ML models with complex feature extraction methods in the literature, a new and simple way to extract OCF feature data with sufficient classification accuracy is proposed. In this regard, the inherent property of active thermal management (ATM) based model predictive control (MPC) to quantify the conduction losses for each semiconductor device in a power converter is integrated with an ML network.
Technical Paper

Model Free Time Delay Compensation for Damped Impedance Method Interfaced Power System Co-Simulation Testing

2023-10-31
2023-01-1600
The joint real-time co-simulation, which involves the virtual integration of laboratories located in different locations, is met with challenges, especially the communication latency or delay, which significantly affects co-simulation accuracy and system stability. The real-time power system co-simulation is particularly susceptible to these delays and could lose synchronism, which affects the simulation fidelity and limits dynamic and transient studies. This paper proposes a model-free framework for predicting and compensating delays in the virtual integration of real-time co-simulators through the damped impedance interface method to address this issue. The framework includes an improved co-simulation interface algorithm called the Damping Impedance Method (DIM) and a model-free predictor system designed to predict and compensate for delays without decomposing and reconstructing signals at coupling points.
Technical Paper

Containerization Approach for High-Fidelity Terramechanics Simulations

2023-04-11
2023-01-0105
Integrated modeling of vehicle, tire and terrain is a fundamental challenge to be addressed for off-road autonomous navigation. The complexities arise due to lack of tools and techniques to predict the continuously varying terrain and environmental conditions and the resultant non-linearities. The solution to this challenge can now be found in the plethora of data driven modeling and control techniques that have gained traction in the last decade. Data driven modeling and control techniques rely on the system’s repeated interaction with the environment to generate a lot of data and then use a function approximator to fit a model for the physical system with the data. Getting good quality and quantity of data may involve extensive experimentation with the physical system impacting developer’s resource. The process is computationally expensive, and the overhead time required is high.
Technical Paper

Access Control Requirements for Autonomous Robotic Fleets

2023-04-11
2023-01-0104
Access control enforces security policies for controlling critical resources. For V2X (Vehicle to Everything) autonomous military vehicle fleets, network middleware systems such as ROS (Robotic Operating System) expose system resources through networked publisher/subscriber and client/server paradigms. Without proper access control, these systems are vulnerable to attacks from compromised network nodes, which may perform data poisoning attacks, flood packets on a network, or attempt to gain lateral control of other resources. Access control for robotic middleware systems has been investigated in both ROS1 and ROS2. Still, these implementations do not have mechanisms for evaluating a policy's consistency and completeness or writing expressive policies for distributed fleets. We explore an RBAC (Role-Based Access Control) mechanism layered onto ROS environments that uses local permission caches with precomputed truth tables for fast policy evaluation.
Technical Paper

Safety Verification and Navigation for Autonomous Vehicles Based on Signal Temporal Logic Constraints

2023-04-11
2023-01-0113
The software architecture behind modern autonomous vehicles (AV) is becoming more complex steadily. Safety verification is now an imminent task prior to the large-scale deployment of such convoluted models. For safety-critical tasks in navigation, it becomes imperative to perform a verification procedure on the trajectories proposed by the planning algorithm prior to deployment. Signal Temporal Logic (STL) constraints can dictate the safety requirements for an AV. A combination of STL constraints is called a specification. A key difference between STL and other logic constraints is that STL allows us to work on continuous signals. We verify the satisfaction of the STL specifications by calculating the robustness value for each signal within the specification. Higher robustness values indicate a safer system. Model Predictive Control (MPC) is one of the most widely used methods to control the navigation of an AV, with an underlying set of state and input constraints.
Technical Paper

Usefulness and Time Savings Metrics to Evaluate Adoption of Digital Twin Technology

2023-04-11
2023-01-0111
The application of virtual engineering methods can streamline the product design process through improved collaboration opportunities among the technical staff and facilitate additive manufacturing processes. A product digital twin can be created using the available computer-aided design and analytical mathematical models to numerically explore the current and future system performance based on operating cycles. The strategic decision to implement a digital twin is of interest to companies, whether the required financial and workforce resources will be worthwhile. In this paper, two metrics are introduced to assist management teams in evaluating the technology potential. The usefulness and time savings metrics will be presented with accompanying definitions. A case study highlights the usefulness metric for the “Deep Orange” prototype vehicle, an innovative off-road hybrid vehicle designed and fabricated at Clemson University.
Technical Paper

Traffic Safety Improvement through Evaluation of Driver Behavior – An Initial Step Towards Vehicle Assessment of Human Operators

2023-04-11
2023-01-0569
In the United States and worldwide, 38,824 and 1.35 million people were killed in vehicle crashes during 2020. These statistics are tragic and indicative of an on-going public health crisis centered on automobiles and other ground transportation solutions. Although the long-term US vehicle fatality rate is slowly declining, it continues to be elevated compared to European countries. The introduction of vehicle safety systems and re-designed roadways has improved survivability and driving environment, but driver behavior has not been fully addressed. A non-confrontational approach is the evaluation of driver behavior using onboard sensors and computer algorithms to determine the vehicle’s “mistrust” level of the given operator and the safety of the individual operating the vehicle. This is an inversion of the classic human-machine trust paradigm in which the human evaluates whether the machine can safely operate in an automated fashion.
Journal Article

Enabling Robust Communication Among Military Ground Vehicles Using Multi-Connectivity

2023-04-11
2023-01-0110
Vehicles-to-Everything or V2X communications provide attractive advantages in achieving reliable and high-performance connectivity amongst ground and aerial military vehicles. The 5G New Radio (NR) based cellular-V2X (C-V2X) technology, can support wide coverage areas with higher data rates and lower latencies needed for demanding military applications ranging from real-time sensing to navigation of autonomous military ground vehicles. Millimeter wave technology (mmWave) is critical to meet such throughput and latency requirements. However, mmWave links have a low transmission range and are often subject to blockages due to factors like weather, terrain, etc. that make them unreliable. Multi-connectivity with packet duplication can be used to enhance the reliability and latency by transmitting concurrently over independent links between a mobile device and multiple base stations.
Technical Paper

Multiple Heat Exchangers for Automotive Systems - A Design Tool

2022-03-29
2022-01-0180
A single radiator cooling system architecture has been widely applied in ground vehicles for safe equipment (e.g., engine block, electronics, and motors) temperature control. The introduction of multiple smaller heat exchangers provides additional energy management features and alternate pathways for continued operation in case of critical subsystem failure. Although cooling performance is often designed for maximum thermal loads, systems typically operate at a fraction of the peak values for most of their life cycle. In this project, a two-radiator configuration with variable flow rates and valve positions has been mathematically modelled and experimentally validated to study its performance feasibility. A multi-node resistance-capacitance thermal model was derived using the ε−NTU approach with accompanying convective and conductive heat transfer pathways within the system.
Technical Paper

An Integrated Energy Management and Control Framework for Hybrid Military Vehicles based on Situational Awareness and Dynamic Reconfiguration

2022-03-29
2022-01-0349
As powertrain hybridization technologies are becoming popular, their application for heavy-duty military vehicles is drawing attention. An intelligent design and operation of the energy management system (EMS) is important to ensure that hybrid military vehicles can operate efficiently, simultaneously maximize fuel economy and minimize monetary cost, while successfully completing mission tasks. Furthermore, an integrated EMS framework is vital to ensure a functional vehicle power system (VPS) to survive through critical missions in a highly stochastic environment, when needed. This calls for situational awareness and dynamic system reconfiguration capabilities on-board of the military vehicle. This paper presents a new energy management and control (EMC) framework based on holistic situational awareness (SA) and dynamic reconfiguration of the VPS.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
Technical Paper

Selection of Surrogate Models with Metafeatures

2022-03-29
2022-01-0365
Modeling and simulation of ground vehicles can be a computationally expensive problem due to the complexity of high-fidelity vehicle models. Often to determine mobility metrics, multiple stochastic simulations need to be evaluated. Surrogate models, or models of models, offer a means to reduce the computational cost of these simulation efforts. Since various types of surrogate models are available to the user, choosing the best surrogate model for a simulation is mostly the challenging process. In this paper, the process of selecting surrogate models and its uses based on model metafeatures is presented. The approach formulates this decision as a trade-off among three main drivers, required dataset size (how much information is necessary to compute the surrogate model), surrogate model accuracy (how accurate the surrogate model must be) and total computational time (how much time is required for the surrogate modeling process).
Technical Paper

Developing Domain Ontologies and an Integration Ontology to Support Modeling and Simulation of Next-Generation Ground Vehicle Systems

2022-03-29
2022-01-0361
The development of next-generation ground vehicle systems relies on modeling and simulation to predict vehicle performance and conduct trade studies in the design and acquisition process. In this paper, we describe the development of an ontology suite to support modeling and simulation of next generation military ground vehicles. The ontology suite is intended to address model reuse challenges and increase the shared understanding of ground vehicle system simulations. The ontology suite consists of four domain ontologies: Vehicle operations (VehOps), Operational environment (Env), Ground vehicle architecture (VehArch), and Simulation model ontology (SimMod) and one integration ontology. The separate domain ontologies allow for extensibility, while the integration ontology establishes semantic relationships across the domains ontologies.
Journal Article

Application of a Digital Twin Virtual Engineering Tool for Ground Vehicle Maintenance Forecasting

2022-03-29
2022-01-0364
The integration of sensors, actuators, and real-time control in transportation systems enables intelligent system operation to minimize energy consumption and maximize occupant safety and vehicle reliability. The operating cycle of military ground vehicles can be on- and off-road in harsh weather and adversarial environments, which demands continuous subsystem functionality to fulfill missions. Onboard diagnostic systems can alert the operator of a degraded operation once established fault thresholds are exceeded. An opportunity exists to estimate vehicle maintenance needs using model-based predicted trends and eventually compiled information from fleet operating databases. A digital twin, created to virtually describe the dynamic behavior of a physical system using computer-mathematical models, can estimate the system behavior based on current and future operating scenarios while accounting for past effects.
Technical Paper

Fusing Offline and Online Trajectory Optimization Techniques for Goal-to-Goal Navigation of a Scaled Autonomous Vehicle

2021-04-06
2021-01-0097
Enabling self-driving vehicles to efficiently and autonomously navigate through an obstacle-filled environment remains a topic of significant contemporary research interest. Motion-planning frameworks, encapsulating both path- and trajectory-planning, have played a dominant role in realizing the deployment of a “sense-think-act” intelligence for autonomous vehicles. However, verification and validation of such intelligence on actual self-driving autonomous vehicles has been limited. Simulation-based verification and validation has the advantage of permitting diverse scenario-based testing and comprehensive “what-if” analyses - but is ultimately limited by the simulation fidelity and realism. In contrast, testing on full-scale real-world systems is constrained by the usual challenges of time, space, and cost engendered in reproducing diverse scenarios in practice.
Technical Paper

A Functional Decomposition Approach for Feature-Based Reference Architecture Modeling

2021-04-06
2021-01-0259
Variant modeling techniques have been developed to allow systems engineers to model multiple similar variants in a product line as a single variant model. In this paper, we expand on this past work to explore the extent to which variant modeling in SysML can be applied to a broad range of dissimilar systems, covering the entire domain of ground vehicles, in single reference architecture model. Traditionally, a system’s structure is decomposed into subsystems and components. However, this method is found to be ineffective when modeling variants that are functionally similar but structurally different. We propose to address this challenge by first decomposing the system not only by subsystem but also by high-level function. This pattern is particularly useful for situations where two variants perform the same function, but one variant performs the function using one subsystem, whereas the other variant performs the same function using one or more different subsystems.
Technical Paper

Implementation and Validation of Behavior Cloning Using Scaled Vehicles

2021-04-06
2021-01-0248
Recent trends in autonomy have emphasized end-to-end deep-learning-based methods that have shown a lot of promise in overcoming the requirements and limitations of feature-engineering. However, while promising, the black-box nature of deep-learning frameworks now exacerbates the need for testing with end-to-end deployments. Further, as exemplars of systems-of-systems, autonomous vehicles (AVs) engender numerous interconnected component-, subsystem and system-level interactions. The ensuing complexity creates challenges for verification and validation at the various component, subsystem- and system-levels as well as end-to-end testing. While simulation-based testing is one promising avenue, oftentimes the lack of adequate fidelity of AV and environmental modeling limits the generalizability. In contrast, full-scale AV testing presents the usual limitations of time-, space-, and cost.
Technical Paper

A Multi-Objective Power Component Optimal Sizing Model for Battery Electric Vehicles

2021-04-06
2021-01-0724
With recent advances in electric vehicles, there is a plethora of powertrain topologies and components available in the market. Thus, the performance of electric vehicles is highly sensitive to the choice of various powertrain components. This paper presents a multi-objective optimization model that can optimally select component sizes for batteries, supercapacitors, and motors in regular passenger battery-electric vehicles (BEVs). The BEV topology presented here is a hybrid BEV which consists of both a battery pack and a supercapacitor bank. Focus is placed on optimal selection of the battery pack, motor, and supercapacitor combination, from a set of commercially available options, that minimizes the capital cost of the selected power components, the fuel cost over the vehicle lifespan, and the 0-60 mph acceleration time. Available batteries, supercapacitors, and motors are from a market survey.
X