Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Machine Learning Approach for Open Circuit Fault Detection and Localization in EV Motor Drive Systems

2024-04-09
2024-01-2790
Semiconductor devices in electric vehicle (EV) motor drive systems are considered the most fragile components with a high occurrence rate for open circuit fault (OCF). Various signal-based and model-based methods with explicit mathematical models have been previously published for OCF diagnosis. However, this proposed work presents a model-free machine learning (ML) approach for a single-switch OCF detection and localization (DaL) for a two-level, three-phase inverter. Compared to already available ML models with complex feature extraction methods in the literature, a new and simple way to extract OCF feature data with sufficient classification accuracy is proposed. In this regard, the inherent property of active thermal management (ATM) based model predictive control (MPC) to quantify the conduction losses for each semiconductor device in a power converter is integrated with an ML network.
Technical Paper

Model Free Time Delay Compensation for Damped Impedance Method Interfaced Power System Co-Simulation Testing

2023-10-31
2023-01-1600
The joint real-time co-simulation, which involves the virtual integration of laboratories located in different locations, is met with challenges, especially the communication latency or delay, which significantly affects co-simulation accuracy and system stability. The real-time power system co-simulation is particularly susceptible to these delays and could lose synchronism, which affects the simulation fidelity and limits dynamic and transient studies. This paper proposes a model-free framework for predicting and compensating delays in the virtual integration of real-time co-simulators through the damped impedance interface method to address this issue. The framework includes an improved co-simulation interface algorithm called the Damping Impedance Method (DIM) and a model-free predictor system designed to predict and compensate for delays without decomposing and reconstructing signals at coupling points.
X