Refine Your Search

Topic

Author

Search Results

Technical Paper

On-Vehicle Fuel Cut Testing for Gasoline Particulate Filter Applications

2019-04-02
2019-01-0968
With the introduction of a stringent particulate number (PN) limit and real driving emission (RDE) requirements, gasoline particulate filters (GPF) are widely adopted for gasoline engines in Europe and China. The filter collects soot and ash. Like in diesel applications, the collected soot will continuously burn under favorable exhaust conditions. However, at extreme conditions, there could be large amounts of soot build-up, which may induce a highly exothermal event, potentially damaging the filter. Thus, it is important to understand what drives the over-heating in application, and develop counter measures. In this study, an on-vehicle fuel cut (FC) testing procedure was developed. The testing was conducted on two vehicles, one gasoline direct injection (GDI) vehicle and one multiple port injection (MPI) vehicle, with different exhaust systems designs (a close coupled GPF and an under floor GPF) and catalyst coating levels (bare and heavily coated GPFs).
Technical Paper

Acoustic Modeling for Three-Dimensional Lightweight Windshields

2018-04-03
2018-01-0141
In the auto industry, lightweight window designs are drawing more attention for improved gas mileage and reduced exhaust emission. Corning’s Gorilla® Glass used in laminate design enables more than 30% weight reduction compared to conventional soda-lime glass laminates. In addition, Gorilla® Glass hybrid laminates (which are a laminate construction of a thick soda-lime glass outer play, a middle polyvinyl butyral interlayer, and a thin Gorilla Glass inner ply) also show significantly improved toughness due to advanced ion-exchange technology that provides high-surface compression. However, the reduced mass also allows increased transmission of sound waves through the windshield into the vehicle cabin. A system-level measurement approach has always been employed to assess overall vehicle acoustic performance by measuring sound pressure levels (SPL) at the driver’s ears. The measured sound signals are usually a superimposition of a variety of noise sources and transmission paths.
Technical Paper

Next Generation Cordierite Thin Wall DPF for Improved Pressure Drop and Lifetime Pressure Drop Solution

2016-04-05
2016-01-0940
Diesel particulate filters (DPF) have become a standard aftertreatment component for a majority of current on-road/non-road diesel engines used in the US and Europe. The upcoming Stage V emissions regulations in Europe will make DPFs a standard component for emissions reductions for non-road engines. The tightening in NOx emissions standard has resulted in the use of selective catalytic reduction (SCR) technology for NOx reduction and as a result the general trend in engine technology as of today is towards a higher engine-out NOx/PM ratio enabling passive regeneration of the DPF. The novel filter concept discussed in this paper is optimized for low pressure drop, high filtration efficiency, and low thermal mass for optimized regeneration and fast heat-up, therefore reducing CO2 implications for the DPF operation.
Journal Article

Vehicular Emissions in Review

2013-04-08
2013-01-0538
This review paper summarizes major developments in vehicular emissions regulations and technologies (light-duty, heavy-duty, gasoline, diesel) in 2012. First, the paper covers the key regulatory developments in the field, including finalized criteria pollutant tightening in California; and in Europe, the development of real-world driving emissions (RDE) standards. The US finalized LD (light-duty) greenhouse gas (GHG) regulation for 2017-25. The paper then gives a brief, high-level overview of key developments in LD and HD engine technology, covering both gasoline and diesel. Marked improvements in engine efficiency are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are just starting to demonstrate 50% brake thermal efficiency. NOx control technologies are then summarized, including SCR (selective catalytic reduction) with ammonia, and hydrocarbon-based approaches.
Technical Paper

Road Test Measurement and SEA Model Correlation of Dominant Vehicle Wind Noise Transfer Paths

2012-11-25
2012-36-0624
In order to effectively use CAE to meet wind noise NVH targets, it is important to understand the main wind noise transfer paths. Testing confirmation of these paths by means of acoustic wind tunnel test is expensive and not always available. An on-road test procedure including a “windowing” method (using barriers) was developed to measure wind noise contribution at important higher frequencies through the main transfer paths, which were shown by test to be the glasses at a typical operating condition in which wind noise was dominant. The test data was used to correlate a full-vehicle SEA (Statistical Energy Analysis) model that placed emphasis on the glass properties, main noise transfer paths, and interior acoustic spaces while simplifying all other transmission paths. A method for generating wind noise loads was developed using measured glass vibration data, exterior pressure data, and interior acoustic data.
Technical Paper

Impacts of B20 Biodiesel on Cordierite Diesel Particulate Filter Performance

2009-11-02
2009-01-2736
Engine laboratory tests were conducted to assess the impact of B20 biodiesel on the performance of cordierite diesel particulate filters (DPFs). Test fuels included 20% soy based methyl ester blended into ultra low sulfur diesel fuel, and two ULSD on-road market fuels. B20 has a higher cetane number, boiling point and oxygen content than typical on-road diesel fuels. A comparative study was performed using a model year 2007 medium duty diesel truck engine. The aftertreatment system included a diesel oxidation catalyst (DOC) followed by a cordierite wall flow DPF. A laboratory-grade supplemental fuel doser was used in the exhaust stream for precise regeneration of the DPF. Tests revealed that the fuel dosing rate was higher and DOC fuel conversion efficiency was poorer for the B20 fuel during low exhaust temperature regenerations. The slip of B20 fuel past the DOC was shown to produce significantly higher exotherms in the DPF during regeneration.
Journal Article

Regeneration Strategies for an Enhanced Thermal Management of Oxide Diesel Particulate Filters

2008-04-14
2008-01-0328
Diesel particulate filters are expected to be used on most passenger car applications designed to meet coming European emission standards, EU5 and EU6. Similar expectations hold for systems designed to meet US Tier 2 Bin 5 standards. Among the various products oxide filter materials, such as cordierite and aluminum titanate, are gaining growing interest due to their unique properties. Besides the intrinsic robustness of the filter products a well designed operating strategy is required for the successful use of filters. The operating strategy is comprised of two elements: the soot estimation and the regeneration strategy. In this paper the second element is discussed in detail by means of theoretical considerations as well as dedicated engine bench experiments. The impact the key operating variables, soot load, exhaust mass flow, oxygen content and temperature, have on the conditions inside the filter are discussed.
Journal Article

Impact of Ceramic Substrate Web Thickness on Emission Light-Off, Pressure Drop, and Strength

2008-04-14
2008-01-0808
The effect of web thickness on emission performance, pressure drop, and mechanical properties was investigated for a series of catalyzed ceramic monolith substrates having cell densities of 900, 600 and 400 cpsi. As expected, thinner webs provide better catalyst light off performance and lower pressure drop, but mechanical strength generally decreases as web thickness is reduced. Good correlations were found between emission performance and geometric parameters based on bare and coated parts. An improved method for estimating the effects of cell density and web thickness on bare substrate strength is described, and the effect of porosity on material strength is also examined. New mechanical strength correlations for ceramic honeycombs are presented. The availability of a range of ceramic product geometries provides options for gasoline exhaust emission design and optimization, especially where increased levels of performance are desired.
Technical Paper

Advanced Mounting System for Light Duty Diesel Filter

2007-04-16
2007-01-0471
This paper employs a systematic approach to packaging design and testing of a system and its components in order to determine the long term durability of light duty diesel filters. This effort has utilized a relatively new aluminum titanate filter technology as well as an advanced support mat technology engineered to provide superior holding force at lower temperatures while maintaining its high temperature performance. Together, these two new technologies form a system that addresses the unique operating conditions of diesel engines. Key physical properties of both the filter and the mat are demonstrated through laboratory testing. The system behavior is characterized by various laboratory techniques and validation procedures.
Technical Paper

Performance Evaluations of Aluminum Titanate Diesel Particulate Filters

2007-04-16
2007-01-0656
Over the past decade, regulations for mobile source emissions have become more stringent thus, requiring advances in emissions systems to comply with the new standards. For the popular diesel powered passenger cars particularly in Europe, diesel particulate filters (DPFs) have been integrated to control particulate matter (PM) emissions. Corning Incorporated has developed a new proprietary aluminum titanate-based material for filter use in passenger car diesel applications. Aluminum titanate (hereafter referred to as AT) filters were launched commercially in the fall of 2005 and have been equipped on more than several hundred thousand European passenger vehicles. Due to their outstanding durability, filtration efficiency and pressure drop attributes, AT filters are an excellent fit for demanding applications in passenger cars. Extensive testing was conducted on engine to evaluate the survivability and long-term thermo-mechanical durability of AT filters.
Technical Paper

Relative Benefits of Various Cell Density Ceramic Substrates in Different Regions of the FTP Cycle

2006-04-03
2006-01-1065
Continuous improvement in vehicle emissions is necessary to meet ever tightening regulations. These regulations are advancing in both passenger and light truck vehicle markets, currently at different rates. Divergent design requirements and target markets for these platforms create unique conditions for aftertreatment needs. To understand the performance of various products in these categories and the potential for optimization, we examine various ultrathin-wall products in the context of a close-coupled configuration in a SULEV vehicle. In addition, these comparisons are carried over to a larger platform to show the performance trends in the context of the sport utility vehicle category. This study considers converter performance in FTP tests, examining bag data, light-off behavior, pressure drop comparisons and front and rear converter contributions. Conclusions are drawn regarding the optimization of converter substrate selection for various target design criteria
Technical Paper

Evaluation of a Stronger Ultra Thin Wall Corning Substrate for Improved Performance

2005-04-11
2005-01-1109
Current trends in automotive emissions control have tended towards reduced mass substrates for improved light-off performance coupled with a reduction in PGM levels. This trend has led to increasingly thinner walls in the substrates and increased open frontal areas, with a potential of reducing the overall mechanical strength of the substrate relative to the thicker walled lower cell density supports. This change in demand driven technology has also led to developments, at times costly, in the processing of the catalytic converter system. Changes in mat materials, handling technology and coating variables are only a few sources of overall increased system costs. Corning has introduced the Celcor® XS™ product to the market which significantly increases the strength of thin and ultra thin walled substrates.
Technical Paper

Aluminum Titanate Compositions for Diesel Particulate Filters

2005-04-11
2005-01-0583
Compositions in the mixed strontium/calcium feldspar ([Sr/Ca]O·Al2O3·2SiO2) - aluminum titanate (Al2O3·TiO2) system have been investigated as alternative materials for the diesel particulate filter (DPF) application. A key attribute of these compositions is their low coefficient of thermal expansion (CTE). Samples have been prepared with porosities of >50% having average pore sizes of between 12 and 16μm. The superior thermal shock resistance, increased resistance to ash attack, and high volumetric heat capacity of these materials, coupled with monolithic fabrication, provide certain advantages over currently available silicon carbide products. In addition, based on testing done so far aluminum titanate-based filters have demonstrated chemical durability and comparable pressure drop (both bare and catalyzed) to current, commercially available, silicon carbide products.
Technical Paper

DPF Regeneration-Concept to Avoid Uncontrolled Regeneration During Idle

2004-10-26
2004-01-2657
Significant particulate emission reductions of diesel engines can be achieved using diesel particulate filters (DPFs). Ceramic wall flow filters with a PM efficiency of >90% have proven to be effective components in emission control. The challenge for the application lies with the development and adaptation of a reliable regeneration strategy. The main focus is emission efficiency over the legally required durability periods, as well as over the useful vehicle life. It will be shown, that new DPF systems are characterized by a high degree of integration with the engine management system, to allow for initiation of the regeneration and its control for optimum DPF protection. Using selected cases, the optimum combination and tuning will be demonstrated for successful regenerations, taking into account DPF properties.
Technical Paper

Diesel Emission Control Technology 2003 in Review

2004-03-08
2004-01-0070
This paper will review the field of diesel emission control with the intent of highlighting representative studies that illustrate the state-of-the-art. First, the author reviews general technology approaches for heavy and light duty applications. Given the emerging significance of ultrafines to health, and to emission control technologies, an overview of the significant developments in ultrafine particulate science is provided, followed by an assessment of filter technology. Regarding NOx control, SCR (selective catalytic reduction) and LNT (lean NOx traps) progress is described. Finally, system integration examples are provided. In general, progress is impressive and studies demonstrate that high-efficiency systems are within reach in all highway vehicle sectors. Engines are making impressive gains, and will increase the options for emission control.
Technical Paper

A CFD Study of Diesel Substrate Channels with Differing Wall Geometries

2004-03-08
2004-01-0152
This paper describes efforts to use computational fluid dynamics (CFD) to provide some general insights on how wall-based protuberances affect the flow and thermal fields in substrates exposed to typical diesel engine exhaust conditions. The channel geometries examined included both square and round bumps as well as an extreme tortuous path design. Three different 2d CFD laminar-flow analyses were performed: (1) a transient fluid analysis to identify the existence of any vortex shedding in the vicinity of the bumps, (2) a steady-state fluid analysis to examine the velocity and pressure fields as well as momentum transport characteristics, and (3) a thermal analysis to examine the heat transport characteristics. The model predicts no vortex shedding behind the bumps for the conditions and geometries examined, confirming the validity of a steady state approach and eliminating this possible transport mechanism.
Technical Paper

Diesel Engine Exhaust Thermal and Vibration Mapping

2004-03-08
2004-01-0590
The characterization of the thermal and vibration environment of the exhaust systems of three modern day diesel engines, with displacements ranging from 1.9 liter to 12.7 liter, was carried out to support the development of exhaust after treatment components. Tri-axial accelerometer and in pipe thermocouple measurements were recorded at several locations along the exhaust systems during vehicle acceleration and steady driving conditions up to 70 mph. The vehicles were loaded to various gross weight configurations to provide a wide range of engine load conditions. Narrow band and octave band vibration power spectral densities are presented and conclusions are drawn as to the spectral content of the exhaust vibration environment and its distribution along the exhaust system. Temperature time histories during vehicle acceleration runs are likewise presented to indicate expected peak exhaust temperatures.
Technical Paper

Isostatic Strength of Extruded Cordierite Ceramic Substrates

2004-03-08
2004-01-1135
This paper provides elastic analysis of compressive stresses in the matrix and skin regions of automotive substrates during 3D- and 2D-isostatic strength testing. The matrix region is treated as transversely isotropic material and the skin region as isotropic material, each with their independent elastic properties. Such a solution helps quantify load sharing by the matrix and skin regions which, in turn, affect compressive stresses in each region. The analysis shows that the tangential compressive stresses in the skin and matrix differ significantly at the interface due to high stiffness ratio of skin versus matrix. The resulting strain in the skin is more severe for thin and ultrathin wall substrates and may lead to localized bending of interfacial cells thereby inducing premature failure. Methods to reduce compressive strain in both the matrix and skin without affecting performance-related advantages are discussed.
Technical Paper

Comparative Analysis of Different Heavy Duty Diesel Oxidation Catalysts Configurations

2004-03-08
2004-01-1419
Diesel Oxidation Catalyst in conjunction with large frontal area substrates is a key element in HDV Diesel emission control systems. This paper describes and reviews tests on a set of various Diesel Oxidation Catalyst configurations (for example cell densities), all with the same catalyst coating. The Diesel Oxidation Catalyst specimens were subjected to the European Stationary Cycle (ESC), the European Transient Cycle (ETC), and the US heavy duty Federal Test Procedure (US FTP). The focus was to study relative emissions, pressure drop, and light-off performance. All tests were conducted using the same Detroit Diesel Series 60 engine operating on ultra low sulfur diesel fuel. In addition to this, the exhaust was regulated so that the backpressure on the engine, upstream of the catalyst was also the same for all catalysts.
Technical Paper

Diesel SCR NOx Reduction and Performance on Washcoated SCR Catalysts

2004-03-08
2004-01-1293
This paper describes a study of ternary V2O5/WO3/TiO2 SCR catalysts coated on standard Celcor® and new highly porous cordierite substrates. At temperatures below 275°C, where NOx conversion is kinetically limited, high catalyst loadings are required to achieve high conversion efficiencies. In principle there are two ways to achieve high catalyst loadings: 1. On standard Celcor® substrates the washcoat thickness can be increased. 2. With new highly porous substrates a high amount of washcoat can be deposited in the walls. Various catalyst loadings varying from 120g/l to 540 g/l were washcoated on both standard Celcor® and new high porosity cordierite substrates with standard coating techniques. Simulated laboratory testing of these samples showed that high catalyst loadings improved both low temperature conversion efficiency and high temperature ammonia storage capacity and consequently increased the overall conversion efficiency.
X