Refine Your Search

Topic

Search Results

Technical Paper

Cummins Light Truck Diesel Engine Progress Report, 2000

2000-06-19
2000-01-2196
The Automotive Market in the United States is moving in the direction of more Light Trucks and fewer Small Cars. The customers for these vehicles have not changed, only their purchase decisions. Cummins has studied the requirements of this emerging market. Design and development of an engine system that will meet these customer needs has started. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of early testing are presented which show that the diesel is possibly a good solution.
Technical Paper

Visual Thermodynamics: Processes in Log(p)-Log(T) Space

1999-03-01
1999-01-0516
A new technique has been developed to allow engine performance engineers to visualize and communicate a wide range of thermodynamic issues and constraints in a single diagram. The technique, called Visual Thermodynamics, is the presentation of engine cycle data in logarithmic pressure and logarithmic temperature space, log(p)-log(T). Visual Thermodynamics is a thought organization and concept visualization tool. It is not intended to provide high-precision numerical results. The utility of the technique is in comparing engine concepts, assessing trends, identifying boundaries of operation and building a general understanding of engine system behavior. The technique provides a powerful mechanism for communicating engine thermodynamic issues to both technical and non-technical colleagues.
Technical Paper

The Cummins Signature 600 Heavy-Duty Diesel Engine

1998-02-23
981035
Design and development of the Cummins Signature 600, a new high horsepower dual overhead cam truck diesel engine, has been completed. The Signature 600 product system includes an all-new engine, controls, fuel system, and business information systems. During product definition, particular emphasis was placed on target markets, customer input to design, engineering and manufacturing processes, concurrent engineering and extensive mechanical and thermal analyses. Cummins Signature 600 fulfills the needs of Owner-Operator and Premium Fleet linehaul trucking businesses.
Technical Paper

A New Method for Engine Low Power Detection in Trucks

1997-11-17
973181
A new method for detecting the low power conditions on electronically-controlled diesel engines used in on-road vehicles has been developed. The advantage of this method is that it uses readily available diagnostic tools and engine installed sensors with no necessity for a dynamometer test. Without removing the engine, it gives an estimate of the real engine power which is accurate to 5%.
Technical Paper

Electronic Systems Integration: The Engine Manufacturer's Perspective

1996-10-01
962179
The increased use of on-board and off-board electronic systems with medium duty and heavy duty trucks and buses presents challenges with compatibility and proper integration. The vehicle architecture is taking shape to establish three areas of computer control-the powertrain, the cab instrument panel, and the cab operations center. The critical element of pursuing proper integration of these systems requires established and clear standards and test methods. Clear roles and responsibilities, a defined system architecture and common test methods are required between subsystem electronic product suppliers and vehicle manufacturers. The electronics integration challenges are presented in the context of the U.S. medium duty and heavy duty automotive industry but have broad applicability to other heavy vehicles and markets worldwide. SAE and ISO forums are needed to address these issues.
Technical Paper

Comparison of Measured and Theoretical Inter-Ring Gas Pressure on a Diesel Engine

1996-10-01
961909
Inter-ring gas pressure and piston ring motion are considered important for the control of oil consumption, particulate emissions, and reduced friction. For this reason, inter-ring gas pressure was measured on a diesel engine. Two different ring pack configurations were tested (positive and negative twist second rings). A significant difference in measured inter-ring pressure was observed. The measurements were compared to the predictions of a cylinder kit model with favorable results. Predictions showed that the observed difference between measured inter-ring pressures is caused by a significant difference in ring motion. The reasons for these differences are explained in this paper.
Technical Paper

The Piston Ring Shape and Its Effects on Engine Performance

1996-02-01
960052
The paper presents the latest research results on the piston ring free shape. A new free shape measurement method with optical gauging was developed. Three numerical models to compute the contact force distribution of piston ring were developed using finite element analysis (FEA). These numerical methods have been compared each other, and validated with the experimental results of ring deformation in a ring gage. The contact force distribution of a piston ring at working condition was also studied. It consists of the ring thermal boundary conditions (RTBC) validation, 3-D FEA thermal analysis and thermal contact force computation based on validated wire-cable element model. The RTBC for heavy duty diesel engine has been validated for the first time using a CUMMINS L10 engine test. Three different free shapes have been tested. The wear band measurements of tested rings all show tremendous improvements over the standard top ring.
Technical Paper

Experimental Results on the Effect of Piston Surface Roughness and Porosity on Diesel Engine Combustion

1996-02-01
960036
Measurements have been made to determine the effect of piston crown surface properties on combustion. Back-to-back engine tests were conducted to compare surface modified pistons to a production piston. Each modified piston was found to prolong combustion duration. Porous coatings and a non porous, roughened piston were observed to increase fuel consumption. Increase in fuel consumption was determined to be the result of increased heat release duration. The data show surface roughness alone affects the duration of heat release. The shift in magnitude of the centroid of heat release was similar to the shift observed in insulated engine experiments.
Technical Paper

Experimental Measurements on the Effect of Insulated Pistons on Engine Performance and Heat Transfer

1996-02-01
960317
Data have been gathered to compare the performance of steel crown pistons coated with yttria stabilized zirconia or mullite to an uncoated piston. The effect of coated pistons on in-cylinder heat transfer was determined from curves of ISFC versus centroid of heat release. Error analysis of the measurements showed uncertainty of ± 3% in ISFC and ± 2 crank angle degrees in the centroid of heat release could be expected for the data. Particulate emissions increased at advanced injection timings with the mullite coated piston while the zirconia coated piston showed an increase in particulate and NOx at advanced timings.
Technical Paper

Experimental and Analytical Studies of Cylinder Head Cooling

1993-04-01
931122
Previous work on the cooling jackets of the Cummins L10 engine revealed flow separation, and low coolant velocities in several critical regions of the cylinder head. The current study involved the use of detailed cooling jacket temperature measurements, and finite element heat transfer analysis to attempt the identification of regions of pure convection, nucleate boiling, and film boiling. Although difficult to detect with certainty, both the measurements and analysis pointed strongly to the presence of nucleate boiling in several regions. Little or no evidence of film boiling was seen, even under very high operating loads. It was thus concluded that the regions of seemingly inadequate coolant flow remained quite effective in controlling cylinder head temperatures. The Cummins L10 upon which this study has focused is an in-line six cylinder, four-stroke direct injection diesel engine, with a displacement of 10 liters.
Technical Paper

Combustion Chamber Component Analysis for Advanced Heavy Duty Diesel Engines

1989-09-01
891900
Detailed thermal analysis was conducted on several advanced cylinder head, liner, and piston concepts, for low heat rejection diesel engines. The analysis was used to define an optimized engine configuration. Results pointed to the strategic use of oil cooling and insulation in the cylinder head, an oil cooled cylinder liner, and an insulated piston, with separate insulation behind the compression rings. Such a configuration reduced in-cylinder heat rejection by 30 percent, while durability would be expected to be maintained or improved from today's production levels.
Technical Paper

The Influence of Bowl Offset on Air motion in a Direct Injection Diesel Engine

1988-10-01
881611
The influence of bowl offset on motored mean flow and turbulence in a direct injection diesel engine has been examined with the aid of a multi-dimensional flow code. Results are presented for three piston geometries. The bowl geometry of each piston was the same, while the offset between the bowl and the cylinder axis was varied from 0.0 to 9.6% of the bore. The swirl ratio at intake valve closing was also varied from 2.60 to 4.27. It was found that the angular momentum of the air at TDC was decreased by less than 8% when the bowl was offset. Nevertheless, the mean (squish and swirl) flows were strongly affected by the offset. In addition, the distribution of turbulent kinetic energy (predicted by the k-e model) was modified. Moderate increases (10% or less) in mass averaged turbulence intensity at TDC with offset were observed. However, the TDC turbulent diffusivity was changed less than 3% due to a slight decrease in turbulent length scale with increasing offset.
Technical Paper

An Assessment of Turbocharging Systems for Diesel Engines from First and Second Law Perspectives

1988-02-01
880598
A number of turbocharging systems have been proposed for improving the drivability of diesel engines for heavy duty trucks. The systems studied here included resonant intake, wastegate, and variable geometry turbocharging. By imposing a fixed power, torque rise, and engine speed range, it was possible to evaluate the fuel economy impact of each approach. First Law and Second Law balances are included to illustrate the differences in the systems. It was found that variable geometry turbocharging provided the best fuel economy.
Technical Paper

An Evaluation of the Lucas Combustion Noise Meter on Cummins ‘B’ Series Engines

1987-08-01
870952
Lucas Industries Noise Centre has introduced a combustion noise meter which is designed to predict the contribution of the combustion process to overall diesel engine noise. The performance of the meter is evaluated using Cummins B series engines in naturally-aspirated and turbocharged form. Combustion noise levels predicted by the meter are compared to levels determined using traditional techniques. The effects of several engine operating parameters on combustion noise are investigated under both steady state and accelerating conditions. The meter reliably predicts changes in combustion noise levels, and is a useful tool for performance development engineers. Combustion noise is shown to be related to the maximum rate of pressure rise at the onset of combustion, but combustion noise is not reliably related to maximum cylinder pressures.
Technical Paper

Test Cell Simulation of the Driveby Noise Test

1987-08-01
870967
Diesel engine manufacturers have traditionally done most engine noise development work under steady: state operating conditions. However, truck driveby noise tests are acceleration tests, and engines exhibit different noise behavior under accelerating conditions. Acceleration noise can be affected by engine performance parameters which may have no influence on steady state noise levels. In this study, a test cell simulation of the truck driveby procedure has been developed and evaluated. Test cell simulation and truck driveby results are compared for a naturally-aspirated and a turbocharged engine. This simulation procedure has been shown to predict reliably results measured in vehicles. As a result, the simulation can be used to evaluate engine modifications during the development process without requiring a vehicle installation.
Technical Paper

A Numerical Study of the Transient Evaporating Spray Mixing Process in the Diesel Environment

1983-10-31
831735
Some results of a systematic study of the effects of fuel and chamber gas properties on the transient evaporating spray mixing process are presented. The study uses an existing two-dimensional stochastic thick spray model. The results show that the combustion process in typical heavy duty, quiescent, DI diesel engines can be mixing limited rather than vaporization limited. In addition, the results show that the mixing process of a transient evaporating spray is characterized by the combined effects of fuel evaporation and its turbulent mixing with the surrounding air. In general, increasing the evaporation rate alone does not necessarily increase the fuel-air mixing rate. Furthermore, two dimensionless parameters have been used to quantify the relative effects of fuel and chamber gas properties on the transient spray evaporation process. Finally, through detailed comparisons between spray and gas jet results, the transient evaporating spray mixing process is better understood.
Technical Paper

Effects of Injection Timing and Exhaust Gas Recirculation on Emissions from a D.I. Diesel Engine

1981-10-01
811234
Some results of a systematic study on the effects of injection timing retard and exhaust gas recirculation on emissions from a D.I. diesel engine are presented. The factors investigated include engine speed, fuel rate, injection timing, injection pressure, intake charge oxygen concentration, and type of diluent. The detailed mechanisms governing the formation and control of nitric oxide are studied analytically, using a previously developed diesel combustion model based on transient fuel-air mixing and Zeldovich nitric oxide reaction mechanisms. The results show that exhaust gas recirculation and injection timing retard are both effective in reducing nitric oxide emissions at the expense of increasing smoke. The reduction of nitric oxide with exhaust gas recirculation and injection timing retard is mainly related to the decrease of local temperature and local atomic oxygen concentration.
Technical Paper

Vechicle Testing of Cummins Turbocompound Diesel Engine

1981-02-01
810073
Two turbocompound diesel engines were assembled and dynamometer tested in preparation for vehicle tests. Both engines met the 1980 California gaseous emission requirement and achieved a minimum BSFC of .313 lb/bhp-hr and a BSFC at rated conditions of .323 lb/bhp-hr. These engines were then installed in Class VIII heavy-duty vehicles to determine the fuel consumption and performance characteristics. Fuel consumption testing showed a 14.8% improvement for the turbocompound engine in comparison to a production NTC-400 used as a baseline. The turbocompound engine also achieved lower noise levels, improved drive-ability, improved gradeability, and moderately increased engine retardation. The second turbocompound engine was placed in commercial service and accumulated 50,000 miles on a cross-country route without malfunction. Tank mileage revealed a 15.92% improvement over a production NTCC-400 which was operating on the same route.
Technical Paper

A Transient Spray Mixing Model for Diesel Combustion

1976-02-01
760128
A transient spray mixing model forming the basis of heterogeneous combustion in direct injection diesel engines is described. Experimental results of transient fuel sprays in a high pressure, high temperature chamber form the basis of spray growth equations. Use of similarity of concentration profile across the spray in conjunction with spray geometry and mass conservation yields a complete description of spatial and temporal fuel-air distribution. Fuel preparation and air entrainment rates are calculated from the history of fuel-air distribution. Progressive evolution of combustion zones is determined by the fuel-air mixing process. Energy conservation and chemical kinetics calculations in each zone yield cylinder pressure and local nitric oxide concentration. The role of fuel-air mixing in diesel combustion is discussed. The model results are compared with experimental data.
Technical Paper

Techniques of Structural Vibration Analysis Applied to Diesel Engine Noise Reduction

1975-02-01
750835
This paper presents several techniques used to define quantitatively the problem of excessive noise through engine structural vibration. These techniques include both operating engine tests and bench tests. In addition, analytical techniques are shown which give a better understanding of how the critical components within the engine cause this vibration. Through the use of analytical and experimental techniques, examples illustrate practical solutions for diesel engine noise reduction.
X