Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

“Wireless Communications for Vehicle Safety:Radio Link Performance & Wireless Connectivity Methods”

2006-10-16
2006-21-0030
Many accidents occur today when distant objects or roadway impediments are not quickly detected. To help avoid these accidents, longer-range safety systems are needed with real-time detection capability and without requiring a line-of-sight (LOS) view by the driver or sensor. Early detection at intersections is required for obstacle location around blind corners and dynamic awareness of approaching vehicles on intersecting roadways. Many of today's vehicular safety systems require short LOS distances to be effective. Such systems include forward collision warning, adaptive cruise control, and lane keeping assistance. To operate over longer LOS distances and in Non-LOS (NLOS) conditions, cooperative wireless communications systems are being considered. This paper describes field results for LOS and NLOS radio links for one candidate wireless system: 5.9GHz Dedicated Short Range Communications (DSRC).
Technical Paper

Compact High-resolution Millimeter-wave Radar for Front-obstacle Detection

2006-04-03
2006-01-1463
We propose a novel millimeter wave radar system and object detection algorithm for automobile use by using advanced null scanning method. Generally, null scanning method can achieve a higher resolution and a more compact sensor size compared to beam scanning method, but needs huge computing power. We introduced the theory of forgetting factor into it and developed a new null scan algorithm. It achieved a high lateral object separation ability of less than 3 degree, and a quick response under feasible computing power in simulation and test vehicle. These technologies enable compact and high performance radar for advanced safety system.
Technical Paper

Integrated Mold Technology for Semiconductor Device

1999-03-01
1999-01-0161
Recently, automotive semiconductor devices need miniaturization. One of the most important technologies is the package which encapsulates devices. In addition, the outer shape of the package is needed to change according to the mounted space. Conventional devices are mounted in the case, and encapsulated with potting resin. However this package structure is difficult to miniaturize because the case size limit. This report describes the development of the packaging technology for miniature and particular outer shape. The devices are set in the cavity and molded to one package. The three-dimension flow simulation is applied to analyze the flow in the cavity. The results of simulation correspond with experimental results. The cavity structure and the mold resin can be optimized by the simulation.
X