Refine Your Search

Topic

Author

Search Results

Technical Paper

A Predictive Model for Spark Stretch and Mixture Ignition in SI Engines

2023-04-11
2023-01-0202
A physics-based spark ignition model was developed and integrated into a commercial CFD code. The model predicted the spark discharge process based on the electrical parameters of the secondary ignition circuit, tracked the spark motion as it was stretched by in-cylinder gas motion, and determined the resulting energy deposition to the gas. In concert with the existing kinetic solver in the CFD code, the resulting ignition and flame propagation processes were simulated. The model results have been validated against both imaging rig experiments of the spark in moving air and against engine experimental data. The model was able to replicate the key features of the spark and to capture the cyclic variability of high-dilution combustion when multiple engine cycles were simulated.
Journal Article

Low Ambient Temperature Impact on a Low NOX Demonstration System

2023-04-11
2023-01-0361
In 2020, CARB adopted the low NOX omnibus ruling, which provided revisions to on-road heavy duty engine compliance standards and certification practices. As part of the updates to the regulation, CARB has introduced a new in-use vehicle testing process that broadens the operation modes tested and considers the manufacturer’s intended vehicle application. Compared to the previous method, or the Not-to-Exceed approach, cold start and low ambient temperature provisions were included as part of the updates. The inclusion of low temperature operation requires the OEMs to design a robust engine and aftertreatment package that extends NOX conversion performance. The following work discusses the NOX emissions performance impact in a low temperature ambient environment. The engine and aftertreatment system evaluated was designed to comply with CARB’s low NOX regulations. The cycles tested included the CARB Southern NTE cycle and an FTP-LLC protocol.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
Technical Paper

DAAAC Protocol for Durability Demonstration of Diesel Aftertreatment Systems: Emissions Performance Validation

2022-08-30
2022-01-1015
Aftertreatment durability demonstration is a required validation exercise for on-road medium and heavy-duty diesel engine certification. The demonstration is meant to validate emissions compliance for the engine and aftertreatment system at full useful life or FUL. Current certification practices allow engine manufacturers to complete partial aging and then extrapolate emissions performance results to FUL. While this process reduces the amount of service accumulation time, it does not consider changes in the aftertreatment deterioration rate. Rather, deterioration is assumed to occur at a linear rate, which may lead to false conclusions relating to emissions compliance. With CARB and EPA’s commitment to the reduction of criteria emissions, emphasis has also been placed on revising the existing certification practices. The updated practices would require engine manufacturers to certify with an aftertreatment system aged to FUL.
Technical Paper

Continuous Oil Consumption Measurement Using Laser Induced Breakdown Spectroscopy

2022-03-29
2022-01-0581
This paper describes a new method for measuring oil consumption using laser induced breakdown spectroscopy (LIBS). LIBS focuses a high energy laser pulse on a sample to form a transient plasma. As the plasma cools, each element produces atomic emission lines which can be used to identify and quantify the elements present in the original sample. In this work, a LIBS system was used on simulated engine exhaust with a focus on quantifying the inorganic components (termed ash) of the particulate emissions. Because some of the metallic elements in the ash almost exclusively result from lube oil consumption, their concentrations can also be correlated to an oil consumption rate. Initial testing was performed using SwRI’s Exhaust Composition Transient Operation Laboratory®(ECTO-Lab®) burner system so that oil consumption and ash mass could be precisely controlled.
Journal Article

Fuel Additive Transport into Engine Oil Determination using Laser Induced Fluorescence (LIF) and Liquid Chromatography (LC)

2021-09-21
2021-01-1149
The transport of fuel-borne additives into the engine oil is a critical factor for the efficacy with which the additive functionality can be imparted on the engine. This paper describes the combination of Laser Induced Fluorescence (LIF) and Liquid Chromatography (LC) to determine the real-time additive concentrations and transfer ratios in a spark-ignition, 2-liter GM LHU engine. The current research used a continuous sample circuit from the engine sump which passed through an integrating cavity flow cell to enhance the LIF signal. In the absence of a fluorescence signature of any of the native additive species, a suitable fluorescing dye was selected to simulate the additive. After establishing rigorous calibration curves, LC was employed as a referee method to do a direct comparison with the LIF determined dye concentrations.
Technical Paper

Combination of Mixed Metal Oxides with Cu-Zeolite for Enhanced Soot Oxidation on an SCRoF

2021-09-05
2021-24-0071
A push for more stringent emissions regulations has resulted in larger, increasingly complex aftertreatment solutions. In particular, oxides of nitrogen (NOX) and particulate matter (PM) have been controlled using two separate systems, selective catalytic reduction (SCR) and the catalyze diesel particulate filter (CDPF), or the functionality has been combined into a single device producing the SCR on filter (SCRoF). The SCRoF forgoes beneficial NO2 production present in the CDPF to avoid NH3 oxidation which occurs when using platinum group metals (PGM) for oxidation. In this study, mixed-metal oxides are shown to oxidize NO to NO2 without appreciable NH3 oxidation. This selectivity leads to enhanced performance when combined with a typical Cu-zeolite catalyst.
Technical Paper

Oil Consumption Pathway Impact on SCR-on-Filter Functional Performance and Lubricant Derived Ash Characteristics

2021-04-06
2021-01-0578
SCR-on-filter, or SCRoF, is an emerging technology for different market segments and vehicle applications. The technology enables simultaneous particulate matter trapping and NOX reduction, and provides thermal management and aftertreatment packaging benefits. However, there is little information detailing the lubricant derived exposure effects on functional SCR performance. A study was conducted to evaluate the impact of various oil consumption pathways on a light duty DOC and SCRoF aftertreatment system. This aftertreatment system was aged utilizing an engine test bench modified to enable increased oil consumption rates via three unique oil consumption pathways. The components were characterized for functional SCR performance, ash morphology, and ash deposition characteristics. This included utilizing techniques, such as SEM / EDS, to evaluate the ash structures and quantify the ash elemental composition.
Technical Paper

Review of the Computer Science and Engineering Solutions for Model Sharing and Model Co-Simulation

2019-03-19
2019-01-1352
The process of developing, parameterizing, validating, and maintaining models occurs within a wide variety of tools, and requires significant time and resources. To maximize model utilization, models are often shared between various toolsets and experts. One common example is sharing aircraft engine models with airframers. The functionality of a given model may be utilized and shared with a secondary model, or multiple models may run collaboratively through co-simulation. There are many technical challenges associated with model sharing and co-simulation. For example, data communication between models and tools must be accurate and reliable, and the model usage must be well-documented and perspicuous for a user. This requires clear communication and understanding between computer scientists and engineers. Most often, models are developed by engineers, whereas the tools used to share the models are developed by computer scientists.
Journal Article

Obstacle Avoidance Strategy and Implementation for Unmanned Ground Vehicle Using LIDAR

2017-03-28
2017-01-0118
Regarding safety, obstacle avoidance has been considered as one of the most important features among ADAS systems for ground vehicles. However, the implementation of obstacle avoidance functions to commercial vehicles are still under progress. In this paper, we demonstrate a complete process of obstacle avoidance strategy for unmanned ground vehicle and implement the strategy on the self-developed Arduino based RC Car. In this process, the sensor LIDAR was used to detect the obstacles on the fore-path. Based on the measured LIDAR data, an optimized path is automatically generated with accommodation of current car position, obstacle locations, car operation capability and global environmental restrictions. The path planning is updated in real time while new or changing obstacles being detected. This algorithm is validated by the simulation results with the RC car. The comparison will be discussed at the end of this paper.
Technical Paper

ADAS Feature Concepts Development Framework via a Low Cost RC Car

2017-03-28
2017-01-0116
ADAS features development involves multidisciplinary technical fields, as well as extensive variety of different sensors and actuators, therefore the early design process requires much more resources and time to collaborate and implement. This paper will demonstrate an alternative way of developing prototype ADAS concept features by using remote control car with low cost hobby type of controllers, such as Arduino Due and Raspberry Pi. Camera and a one-beam type Lidar are implemented together with Raspberry Pi. OpenCV free open source software is also used for developing lane detection and object recognition. In this paper, we demonstrate that low cost frame work can be used for the high level concept algorithm architecture, development, and potential operation, as well as high level base testing of various features and functionalities. The developed RC vehicle can be used as a prototype of the early design phase as well as a functional safety testing bench.
Journal Article

Automated Driving Impediments

2016-09-27
2016-01-8007
Since the turn of the millennium, automated vehicle technology has matured at an exponential rate, evolving from research largely funded and motivated by military and agricultural needs to a near-production market focused on everyday driving on public roads. Research and development has been conducted by a variety of entities ranging from universities to automotive manufacturers to technology firms demonstrating capabilities in both highway and urban environments. While this technology continues to show promise, corner cases, or situations outside the average driving environment, have emerged highlighting scenarios that impede the realization of full automation anywhere, anytime. This paper will review several of these corner cases and research deficiencies that need to be addressed for automated driving systems to be broadly deployed and trusted.
Technical Paper

Port Design for Charge Motion Improvement within the Cylinder

2016-04-05
2016-01-0600
The engine intake process governs many aspects of the flow within the cylinder. The inlet valve is the minimum area, so gas velocities at the valve are the highest velocities seen. Geometric configuration of the inlet ports and valves, and the opening schedule create organized large scale motions in the cylinder known as swirl and tumble. Good charge motion within the cylinder will produce high turbulence levels at the end of the compression stroke. As the turbulence resulting from the conversion energy of the inlet jet decays fast, the strategy is to encapsulate some of the inlet jet in the organized motions. In this work the baseline port of a 2.0 L gasoline engine was modified by inserting a tumble plate. The work was done in support of an experimental study for which a new single-cylinder research engine was set up to allow combustion system parameters to be varied in steps over an extensive range. Tumble flow was one such parameter.
Technical Paper

Analysis Lead Drivability Assessment

2015-09-29
2015-01-2804
Drivability and powertrain refinement continue to gain importance in the assessment of overall vehicle quality. This notion has transcended its light duty origins and is beginning to gain considerable traction in the medium and heavy duty markets. However, with drivability assessment and refinement also comes the high costs associated with vehicle testing, including items such as test facilities, prototype component evaluation, fuel and human resources. Taking all of this into account, any and all measures must be used to reduce the cost of drivability evaluation and powertrain refinement. This paper describes an analysis based co-simulation methodology, where sophisticated powertrain simulation and objective drivability evaluation tools can be used to predict vehicle drivability. A fast running GT power engine model combined with simplified controls representation in Matlab/Simulink was used to predict engine transients and responses.
Technical Paper

The OBD System Development Database - a Solution for Knowledge Management and Tool Supported Control System Design and Calibration

2014-04-01
2014-01-1171
The correct information about legal demands of the On-Board-Diagnostic (OBD) system in a vehicle project is required throughout the entire development process. Usually, the main obstacle in succeeding is to provide the company's expertise of some few experts for all employees who work in OBD related projects. The paper describes the AVL solution for knowledge management and tool supported control system design and calibration: OBD System Development Database. The software enables the user to access the regulatory requirements for a specific application and legislation from past, present and future (proposed rule-making) point of view. Information concerning already available and stored monitoring concepts is linked to the requirements in order to re-use potentially suitable concepts and to enable an efficient knowledge exchange within the company.
Technical Paper

Correlations of Non-Vaporizing Spray Penetration for 3000 Bar Diesel Spray Injection

2013-09-08
2013-24-0033
Increasing fuel injection pressure has enabled reduction of diesel emissions while retaining the advantage of the high thermal efficiency of diesel engines. With production diesel injectors operating in the range from 300 to 2400 bar, there is interest in injection pressures of 3000 bar and higher for further emissions reduction and fuel efficiency improvements. Fundamental understanding of diesel spray characteristics including very early injection and non-vaporizing spray penetration is essential to improve model development and facilitate the integration of advanced injection systems with elevated injection pressure into future diesel engines. Studies were conducted in an optically accessible constant volume combustion vessel under non-vaporizing conditions. Two advanced high pressure multi-hole injectors were used with different hole diameters, number of holes, and flow rates, with only one plume of each injector being imaged to enable high frame rate imaging.
Technical Paper

Evaluation of Hydraulic Efficiency Using High-Shear Viscosity Fluids

2010-10-25
2010-01-2178
Fossil fuel consumption is a significant factor in terms of both economic and environ-mental impact of on- and off-highway systems. Because fuel consumption can be directly tied to equipment efficiency, gains in efficiency can lead to reduction in operating costs as well as conservation of nonrenewable resources. Fluid performance has a direct effect on the efficiency of a hydraulic system. A procedure has been developed for measuring a fluid's effect on the degree to which mechanical power is efficiently converted to hydraulic power in pumps typical of off-highway applications.
Technical Paper

Hybrid Robust Control for Engines Running Low Temperature Combustion and Conventional Diesel Combustion Modes

2007-04-16
2007-01-0770
This paper describes a hybrid robust nonlinear control approach for modern diesel engines running low temperature combustion and conventional diesel combustion modes. Using alternative combustion modes has become a promising approach to reduce engine emissions. However, due to very different in-cylinder conditions and fueling parameters for different combustion modes, control of engines operating multiple combustion modes is very challenging. It becomes difficult for conventional calibration / mapping based approaches to produce satisfactory results in terms of engine torque responses and emissions. Advanced control techniques are then demanded to accomplish the tasks. An innovative hybrid control system is designed to track different key engine operating variables at different combustion modes as well as avoid singularity which is inherent for turbocharged diesel engines running multiple combustion modes.
Technical Paper

The Effect of Sparkplug Design on Initial Flame Kernel Development and Sparkplug Performance

2006-04-03
2006-01-0224
Tests were conducted on a variety of commercially available spark plugs to determine the influence of igniter design on initial kernel formation and overall performance. Flame kernel formation was investigated using high-speed schlieren visualization. The flame growth rate was quantified using the area of the burned gas region. The results showed that kernel growth rate was heavily influenced by electrode geometry and configuration. The igniters were also tested in a bomb calorimeter to determine the levels of supplied and delivered energy. The typical ratio of supplied to delivered energy was 20% and igniters with a higher internal resistance delivered more energy and had faster kernel formation rates. The exception was plugs with large amounts of conductive mass near the electrodes, which had very slow kernel formation rates despite relatively high delivered energy levels.
Technical Paper

The Effect of Fuel Injection on the Velocity Fluctuations in the Bowl of a DISI Engine

2005-05-11
2005-01-2102
Swirl plane Particle Image Velocimetry (PIV) measurements were performed in a single-cylinder optically accessible gasoline direct injection (DISI) engine using a borescope introduced through the spark plug hole. This allowed the use of a contoured piston and the visualization of the flow field in and around the piston bowl. The manifold absolute pressure (MAP) was fixed at 90 kPa and the engine speed was varied in increments of 250 rpm from 750 rpm to 2000 rpm. Images were taken from 270° to 320° bTDC of compression at 10° intervals to study the evolution of the velocity fluctuations. Measurements were performed with and without fuel injection to study its effect on the in-cylinder flow fields. Fuel was injected at 10 MPa and 5 MPa. The 2-D spatial mean velocities of individual flow fields and their decompositions were averaged over 100 cycles and used to investigate the effects of engine speed and image timing on the flow field.
X