Refine Your Search

Topic

Author

Search Results

Technical Paper

Numerical Study of Dual Fuel Methanol/Diesel Combustion under Engine-like Condition

2023-09-29
2023-32-0121
Alternative fuels such as methanol can significantly reduce greenhouse gas (GHG) emissions when used in internal combustion engines (ICEs). This study characterized the combustion of methanol, methanol/diesel, and methanol/renewable diesel numerically. Numerical findings were also compared with engine experiments using a single-cylinder engine (SCE). The engine was operated under a dual-fuel combustion mode: methanol was fumigated at the intake port, and diesel was injected inside the cylinder. The characteristic of ignition delay trend as methanol concentration increased is being described at low temperature (low engine load) and high temperature (high engine load) conditions.
Technical Paper

Engine and Emissions Performance of Renewable Diesel in a Heavy-Duty Diesel Engine: A Single-cylinder Engine Experiment

2023-04-11
2023-01-0273
As an alternative fuel, renewable diesel (RD) could improve the performance of conventional internal combustion engines (ICE) because of its difference in fuel properties. With almost no aromatic content in the fuel, RD produces less soot emissions than diesel. The higher cetane number (CN) of RD also promotes ignition of the fuel, which is critical, especially under low load, and low reactivity conditions. This study tested RD fuel in a heavy-duty single-cylinder engine (SCE) under compression-ignition (CI) operation. Test condition includes low and high load points with change in exhaust gas recirculation (EGR) and start of injection (SOI). Measurements and analysis are provided to study combustion and emissions, including particulate matters (PM) mass and particle number (PN). It was found that while the combustion of RD and diesel are very similar, PM and PN emissions of RD were reduced substantially compared to diesel.
Journal Article

Methanol Fuel Testing on Port Fuel Injected Internal-Only EGR, HPL-EGR and D-EGR® Engine Configurations

2017-10-08
2017-01-2285
The primary focus of this investigation was to determine the hydrogen reformation, efficiency and knock mitigation benefits of methanol-fueled Dedicated EGR (D-EGR®) operation, when compared to other EGR types. A 2.0 L turbocharged port fuel injected engine was operated with internal EGR, high-pressure loop (HPL) EGR and D-EGR configurations. The internal, HPL-EGR, and D-EGR configurations were operated on neat methanol to demonstrate the relative benefit of D-EGR over other EGR types. The D-EGR configuration was also tested on high octane gasoline to highlight the differences to methanol. An additional sub-task of the work was to investigate the combustion response of these configurations. Methanol did not increase its H2 yield for a given D-EGR cylinder equivalence ratio, even though the H:C ratio of methanol is over twice typical gasoline.
Technical Paper

Investigation of Lubrication Oil as an Ignition Source in Dual Fuel Combustion Engine

2013-10-14
2013-01-2699
Dual fuel engines have shown significant potential as high efficiency powerplants. In one example, SwRI® has run a high EGR, dual-fuel engine using gasoline as the main fuel and diesel as the ignition source, achieving high thermal efficiencies with near zero NOx and smoke emissions. However, assuming a tank size that could be reasonably packaged, the diesel fuel tank would need to be refilled often due to the relatively high fraction of diesel required. To reduce the refill interval, SwRI investigated various alternative fluids as potential ignition sources. The fluids included: Ultra Low Sulfur Diesel (ULSD), Biodiesel, NORPAR (a commercially available mixture of normal paraffins: n-pentadecane (normal C15H32), and n-hexadecane (normal C16H34)) and ashless lubrication oil. Lubrication oil was considered due to its high cetane number (CN) and high viscosity, hence high ignitability.
Journal Article

Lubricant Reactivity Effects on Gasoline Spark Ignition Engine Knock

2012-04-16
2012-01-1140
The performance and efficiency of spark ignited gasoline engines is often limited by end-gas knock. In particular, when operating the engine at high loads, combustion phasing is retarded to prevent knock, resulting in a significant reduction of engine efficiency. Since the invention of the spark ignition (SI) engine, much work has been devoted to improve and regulate fuel characteristics, such as octane number, to suppress engine knock. The auto-ignition tendency of the engine lubricant however, as described by cetane number (CN), has received little attention, as it has been assumed that engine lubricant effects on knock are insignificant, primarily due to low levels of average oil consumption. However, with modern SI engines being developed to operate at higher loads and closer to knock limits, the reactivity of engine lubricants can impact the knock behavior.
Journal Article

Effects of Methyl Ester Biodiesel Blends on NOx Emissions

2008-04-14
2008-01-0078
Effects of methyl ester biodiesel fuel blends on NOx emissions are studied experimentally and analytically. A precisely controlled single cylinder diesel engine experiment was conducted to determine the impact of a 20% blend of soy methyl ester biodiesel (B20) on NOx emissions. The data were then used to calibrate KIVA chemical kinetics models which were used to determine how the biodiesel blend affects NOx production during the combustion process. In addition, the impact on the engine control system of the lower specific energy content of biodiesel was determined. Both factors, combustion and controls, must be taken into account when determining the net NOx effect of biodiesel compared to conventional diesel fuel. Because the magnitude and even direction of NOx effect changes with engine load, the NOx effect associated with burning biodiesel blends over a duty cycle depends on the duty cycle average power and fuel cetane number.
Technical Paper

An Evaluation of Glycerin (Glycerol) as a Heavy Duty Engine Antifreeze/Coolant Base

2007-10-29
2007-01-4000
In the early years of antifreeze/coolants (1920s & 30s) glycerin saw some usage, but because of higher cost and weaker freeze point depression, it was not competitive with ethylene glycol. Glycerin is a by-product of the manufacture of biodiesel (fatty acid methyl esters) made by reacting natural vegetable or animal fats with methanol. Biodiesel fuel is becoming increasingly important and is expected to gain a large market share in the next several years. Regular diesel fuels blended with 2%, 5%, and 20% biodiesel are now commercially available. The large amount of glycerin generated from high volume usage of biodiesel fuel has resulted in this chemical becoming cost competitive with the glycols currently used in engine coolants. For this reason, and lower toxicity comparable to that of propylene glycol, glycerin deserves to be reconsidered as a base for antifreeze/coolant.
Technical Paper

Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

2005-05-11
2005-01-2200
Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were a 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NOx+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NOx emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NOx increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines.
Technical Paper

The Heavy Duty Gasoline Engine - A Multi-Cylinder Study of a High Efficiency, Low Emission Technology

2005-04-11
2005-01-1135
SwRI has developed a new technology concept involving the use of high EGR rates coupled with a high-energy ignition system in a gasoline engine to improve fuel economy and emissions. Based on a single-cylinder study [1], this study extends the concept of a high compression ratio gasoline engine with EGR rates > 30% and a high-energy ignition system to a multi-cylinder engine. A 2000 MY Isuzu Duramax 6.6 L 8-cylinder engine was converted to run on gasoline with a diesel pilot ignition system. The engine was run at two compression ratios, 17.5:1 and 12.5:1 and with two different EGR systems - a low-pressure loop and a high pressure loop. A high cetane number (CN) diesel fuel (CN=76) was used as the ignition source and two different octane number (ON) gasolines were investigated - a pump grade 91 ON ((R+M)/2) and a 103 ON ((R+M)/2) racing fuel.
Technical Paper

The Texas Diesel Fuels Project, Part 4: Fuel Consumption, Emissions, and Cost-Effectiveness of an Ultra-Low-Sulfur Diesel Fuel Compared to Conventional Diesel Fuels

2005-04-11
2005-01-1724
The Texas Department of Transportation (TxDOT) began using an ultra-low-sulfur, low aromatic, high cetane number diesel fuel (TxLED, Texas Low Emission Diesel) in June 2003. They initiated a simultaneous study of the effectiveness to reduce emissions and influence fuel economy of this fuel in comparison to 2D on-road diesel fuel used in both their on-road and off-road equipment. The study incorporated analyses for the fleet operated by the Association of General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel in their equipment. One off-road engine, two single-axle dump trucks, and two tandem-axle dump trucks were tested. The equipment tested included newer electronically-controlled diesels. The off-road engine was tested over the TxDOT Telescoping Boom Excavator Cycle. The dump trucks were tested using the “route” technique over the TxDOT Single-Axle Dump Truck Cycle or the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

Comparison of Emissions and Fuel Economy Characteristics of Conventional, Additized, and Substantially Synthetic Diesel Fuels in a Heavy-Duty Diesel Engine

2002-05-06
2002-01-1702
This study compared four different candidate fuels which were prepared by blending different components with a typical No. 2 diesel. Two fuels were blended with a synthetic diesel prepared from natural gas condensate, and all candidate fuels were splash blended with a proprietary additive package from International Fuel Technology Inc. (IFT). These fuels were then compared to the No. 2 diesel and to a California Air Resources Board (CARB) equivalent diesel fuel. The comparisons included fuel properties such as sulfur content, aromatics, cetane, lubricity, distillation; emissions; and fuel consumption. Emission testing was conducted on a 1991 Detroit Diesel Series 60. The Environmental Protection Agency (EPA) transient cycle was utilized for emissions, fuel characterization was performed according to ASTM standards, and fuel consumption was calculated by the carbon balance method.
Technical Paper

Oxygenates for Advanced Petroleum-Based Diesel Fuels: Part 1. Screening and Selection Methodology for the Oxygenates

2001-09-24
2001-01-3631
The overall program objectives were three fold: assess the benefits and limitations of oxygenated diesel fuels on engine performance and emissions identify oxygenates most suitable for potential use in future diesel formulations based on physico-chemical properties (e.g. flash point), toxicity, biodegradability and estimated cost of production perform limited emissions and performance testing of the oxygenated diesel blends select at least two oxygenated compounds for advanced engine testing In Part 1 of this program which is described in this paper, an extensive literature review was conducted to identify potential oxygenates for blending into diesel fuels. As many as 71 oxygenates were identified for the initial screening process. Based on a set of physical and chemical properties, a screening methodology was developed to select the 8 oxygenates that will be eligible for engine testing.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT™) - Part IV

2001-09-24
2001-01-3527
This paper reports on the fourth part of a continued study on further research and development with the automated Ignition Quality Tester (IQT™). Research over the past six years (reported in SAE papers #961182, 971636 and 1999-01-3591) has demonstrated the capabilities of this automated apparatus to measure the ignition quality and accurately determine a derived cetane number (DCN) for a wide range of middle distillate and non-conventional diesel fuels. The present paper reports on a number of separate investigations supporting these continued studies.
Technical Paper

EPA HDEWG Program - Statistical Analysis

2000-06-19
2000-01-1859
The U.S. Environmental Protection Agency (EPA) formed a Heavy-Duty Engine Working Group (HDEWG) in the Mobile Sources Technical Advisory Subcommittee in 1995. The goal of the HDEWG was to help define the role of the fuel in meeting the future emissions standards in advanced technology engines (beyond 2004 regulated emissions levels). A three-phase program was developed. This paper presents the results of the statistical analysis of the data collected in the Phase II program. Included is a description of the design of the fuel test matrix, and a listing of the regression equations developed to predict emissions as a function of fuel density, cetane number, monoaromatics, and polyaromatics. Also included is a description of selected analyses of the emissions from a smaller set of fuel data that allowed direct comparison of the effects of natural and boosted cetane number.
Technical Paper

EPA HDEWG Program-Engine Tests Results

2000-06-19
2000-01-1858
In 1997 the US EPA formed a Heavy-Duty Engine Working Group (HDEWG) in the Mobile Sources Technical Advisory Subcommittee to address the questions related to fuel property effects on heavy-duty diesel engine emissions. The Working Group consisted of members from EPA and the oil refining and engine manufacturing industries. The goal of the Working Group was to help define the role of the fuel in meeting the future emissions standards in advanced technology engines (beyond 2004 regulated emissions levels). To meet this objective a three-phase program was developed. Phase I was designed to demonstrate that a prototype engine, located at Southwest Research Institute, represented similar emissions characteristics to that of certain manufacturers prototype engines. Phase II was designed to document the effects of selected fuel properties using a statistically designed fuel matrix in which cetane number, density, and aromatic content and type were the independent variables.
Technical Paper

Analysis of the Ignition Behaviour of the ASTM D-613 Primary Reference Fuels and Full Boiling Range Diesel Fuels in the Ignition Quality Tester (IQT™) - Part III

1999-10-25
1999-01-3591
This paper reports on the third part of a continued study (SAE Papers 961182, 971636) to develop the Ignition Quality Tester (IQT™). Past research has shown that this automated laboratory/refinery apparatus can be used to accurately predict the cetane number of middle distillates and alternative fuels using small sample volumes (< 50 mL). The paper reports on the main objective of a study performed by Advanced Engine Technology Ltd. (AET), in co-operation with its research partners. The primary research objective of this work is to further the understanding of fuel preparation (fuel air mixing) and start of combustion processes in the IQT™. Key to this understanding is the manner in which single molecule compounds and full boiling-range diesel fuels behave during these processes. Insights are provided into the manner in which the American Society for Testing and Materials (ASTM) D-613 primary reference fuels (PRFs) undergo fuel preparation and start of combustion in the IQT™.
Technical Paper

The Effects of Fuel Properties on Emissions from a 2.5gm NOx Heavy-Duty Diesel Engine

1998-10-19
982491
The engine selected for this work was a Caterpillar 3176 engine. Engine exhaust emissions, performance, and heat release rates were measured as functions of engine configuration, engine speed and load. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to achieve a NOx emissions level of 2.5 gm/hp-hr. Measurements were performed at 7 different steady-state, speed-load conditions on thirteen different test fuels. The fuel matrix was statistically designed to independently examine the effects of the targeted fuel properties. Cetane number was varied from 40 to 55, using both natural cetane number and cetane percent improver additives. Aromatic content ranged from 10 to 30 percent in two different forms, one in which the aromatics were predominantly mono-aromatic species and the other, where a significant fraction of the aromatics were either di- or tri-aromatics.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT) - Part II

1997-05-01
971636
A combustion-based analytical method, initially developed by the Southwest Research Institute (SwRI) and referred to as the Constant Volume Combustion Apparatus (CVCA), has been further researched/developed by an SwRI licensee (Advanced Engine Technology Ltd.). This R&D has resulted in a diesel fuel Ignition Quality Tester (IQT) that permits rapid and precise determination of the ignition quality of middle distillate and alternative fuels. Its features, such as low fuel volume requirement, complete test automation, and self-diagnosis, make it highly suitable for commercial oil industry and research applications. A preliminary investigation, reported in SAE paper 961182, has shown that the IQT results are highly correlated to the ASTM D-613 cetane number (CN). The objective of this paper is to report on efforts to further refine the original CN model and report on improvements to the IQT fuel injection system.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT)

1996-05-01
961182
A combustion-based analytical method, initially developed by the Southwest Research Institute (SwRI) referred to as the Constant Volume Combustion Apparatus (CVCA), has been further researched/developed by an SwRI licensee (Advanced Engine Technology Ltd.) as an Ignition Quality Tester (IQT) for laboratories and refineries. The IQT software/hardware system permits rapid and precise determination of ignition quality for middle distillate fuels. Its features, such as low fuel volume requirement, complete test automation, and self-diagnosis, make it highly suitable for commercial oil industry and research applications. Operating and test conditions were examined in the context of providing a high correlation with cetane number (CN), as determined by the ASTM D-613 method. Preliminary investigation indicates that the IQT results are highly repeatable (± 0.30 CN), providing a high sensitivity to CN variation over the 33 to 58 CN range.
Technical Paper

Effects of Cetane Number, Aromatics, and Oxygenates on Emissions From a 1994 Heavy-Duty Diesel Engine With Exhaust Catalyst

1995-02-01
950250
A Coordinating Research Council sponsored test program was conducted to determine the effects of diesel fuel properties on emissions from two heavy-duty diesel engines designed to meet EPA emission requirements for 1994. Results for a prototype 1994 DDC Series 60 were reported in SAE Paper 941020. This paper reports the results from a prototype 1994 Navistar DTA-466 engine equipped with an exhaust catalyst. A set of ten fuels having specific variations in cetane number, aromatics, and oxygen were used to study effects of these fuel properties on emissions. Using glycol diether compounds as an oxygenated additive, selected diesel fuels were treated to obtain 2 and 4 mass percent oxygen. Cetane number was increased for selected fuels using a cetane improver. Emissions were measured during transient FTP operation of the Navistar engine tuned for a nominal 5 g/hp-hr NOx, then repeated using a 4 g/hp-hr NOx calibration.
X