Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Particle Number Counter as a “Black Box” - A Novel Approach to a Universal Particle Number Calibration Standard for Automotive Exhaust

2020-09-15
2020-01-2195
The reduction of vehicle exhaust particle emissions is a success story of European legislation. Various particle number (PN) counters and calibration procedures serve as tools to enforce PN emission limits during vehicle type approval (VTA) or periodical technical inspection (PTI) of in-use vehicles. Although all devices and procedures apply to the same PN-metric, they were developed for different purposes, by different stakeholder groups and for different target costs and technical scopes. Furthermore, their calibration procedures were independently defined by different stakeholder communities. This frequently leads to comparability and interpretation issues. Systematic differences of stationary and mobile PN counters (PN-PEMS) are well-documented. New, low-cost PTI PN counters will aggravate this problem. Today, tools to directly compare different instruments are scarce.
Technical Paper

Model-Based Calibration of an Automotive Climate Control System

2020-04-14
2020-01-1253
This paper describes a novel approach for modeling an automotive HVAC unit. The model consists of black-box models trained with experimental data from a self-developed measurement setup. It is capable of predicting the temperature and mass flow of the air entering the vehicle cabin at the various air vents. A combination of temperature and velocity sensors is the basis of the measurement setup. A measurement fault analysis is conducted to validate the accuracy of the measurement system. As the data collection is done under fluctuating ambient conditions, a review of the impact of various ambient conditions on the HVAC unit is performed. Correction models that account for the different ambient conditions incorporate these results. Numerous types of black-box models are compared to identify the best-suited type for this approach. Moreover, the accuracy of the model is validated using test drive data.
Journal Article

A Method for Identifying Most Significant Vehicle Parameters for Controller Performance of Autonomous Driving Functions

2019-04-02
2019-01-0446
In this paper a method for the identification of most significant vehicle parameters influencing the behavior of a lateral control system of autonomous car is presented. Requirements for the design stage of the controller need to consider many uncertainties in the plant. While most vehicle properties can be compensated by an appropriate tuning of the control parameters, other vehicle properties can change significantly during usage. The control system is evaluated based on performance measures. Analyzed parameters comprise functional tire characteristics, mass of the vehicle and position of its center of gravity. Since the parameters are correlated, but Sobol’ sensitivity analysis assumes decorrelated inputs, random variation yields no reasonable results. Furthermore, the variation of each parameter or set of parameters is not applicable since the numbers of required simulations is increased significantly according to input dimension.
Technical Paper

A Physical-Based Approach for Modeling the Influence of Different Operating Parameters on the Dependency of External EGR Rate and Indicated Efficiency

2018-09-10
2018-01-1736
External Exhaust Gas Recirculation (EGR) provides an opportunity to increase the efficiency of turbocharged spark-ignition engines. Of the competing technologies and configurations, Low-Pressure EGR (LP-EGR) is the most challenging in terms of its dynamic behavior. Only some of the stationary feasible potential can be used during dynamic engine operation. To guarantee fuel consumption-optimized engine operation with no instabilities, a load point-dependent limitation of the EGR rate or alternatively an adaptation of the operating point to the actual EGR rate is crucial. For this purpose, a precise knowledge of efficiency and combustion variance is necessary. Since the operating state includes the actual EGR rate, it has an additional dimension, which usually results in an immense measuring effort.
Journal Article

Novel Index for Evaluation of Particle Formation Tendencies of Fuels with Different Chemical Compositions

2017-08-18
2017-01-9380
Current regulatory developments aim for stricter emission limits, increased environmental protection and purification of air on a local and global scale. In order to find solutions for a cleaner combustion process, it is necessary to identify the critical components and parameters responsible for the formation of emissions. This work provides an evaluation process for particle formation during combustion of a modern direct injection engine, which can help to create new aftertreatment techniques, such as a gasoline particle filter (GPF) system, that are fit for purpose. With the advent of “real driving emission” (RDE) regulations, which include market fuels for the particulate number testing procedure, the chemical composition and overall quality of the fuel cannot be neglected in order to yield a comparable emission test within the EU and worldwide.
Journal Article

Bridging the Gap between Open Loop Tests and Statistical Validation for Highly Automated Driving

2017-03-28
2017-01-1403
Highly automated driving (HAD) is under rapid development and will be available for customers within the next years. However the evidence that HAD is at least as safe as human driving has still not been produced. The challenge is to drive hundreds of millions of test kilometers without incidents to show that statistically HAD is significantly safer. One approach is to let a HAD function run in parallel with human drivers in customer cars to utilize a fraction of the billions of kilometers driven every year. To guarantee safety, the function under test (FUT) has access to sensors but its output is not executed, which results in an open loop problem. To overcome this shortcoming, the proposed method consists of four steps to close the loop for the FUT. First, sensor data from real driving scenarios is fused in a world model and enhanced by incorporating future time steps into original measurements.
Technical Paper

Local Gaussian Process Regression in Order to Model Air Charge of Turbocharged Gasoline SI Engines

2016-04-05
2016-01-0624
A local Gaussian process regression approach is presented, which allows to model nonlinearities of internal combustion engines more accurate than global Gaussian process regression. By building smaller models, the prediction of local system behavior improves significantly. In order to predict a value, the algorithm chooses the nearest training points. The number of chosen training points depends on the intensity of estimated nonlinearity. After determining the training points, a model is built, the prediction performed and the model discarded. The approach is demonstrated with a benchmark system and air charge test bed measurements. The measurements are taken from a turbocharged SI gasoline engine with both variable inlet valve lift and variable inlet and exhaust valve opening angle. The results show how local Gaussian process regression outmatches global Gaussian process regression concerning model quality and nonlinearities in particular.
Technical Paper

A Virtual Residual Gas Sensor to Enable Modeling of the Air Charge

2016-04-05
2016-01-0626
Air charge calibration of turbocharged SI gasoline engines with both variable inlet valve lift and variable inlet and exhaust valve opening angle has to be very accurate and needs a high number of measurements. In particular, the modeling of the transition area from unthrottled, inlet valve controlled resp. throttled mode to turbocharged mode, suffers from small number of measurements (e.g. when applying Design of Experiments (DoE)). This is due to the strong impact of residual gas respectively scavenging dominating locally in this area. In this article, a virtual residual gas sensor in order to enable black-box-modeling of the air charge is presented. The sensor is a multilayer perceptron artificial neural network. Amongst others, the physically calculated air mass is used as training data for the artificial neural network.
Technical Paper

Li-Ion Battery SOC Estimation Using Non-Linear Estimation Strategies Based on Equivalent Circuit Models

2014-04-01
2014-01-1849
Due to their high energy density, power density, and durability, lithium-ion (Li-ion) batteries are rapidly becoming the most popular energy storage method for electric vehicles. Difficulty arises in accurately estimating the amount of left capacity in the battery during operation time, commonly known as battery state of charge (SOC). This paper presents a comparative study between six different Equivalent Circuit Li-ion battery models and two different state of charge (SOC) estimation strategies. The Battery models cover the state-of-the-art of Equivalent Circuit models discussed in literature. The Li-ion battery SOC is estimated using non-linear estimation strategies i.e. Extended Kalman filter (EKF) and the Smooth Variable Structure Filter (SVSF). The models and the state of charge estimation strategies are compared against simulation data obtained from AVL CRUISE software.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Realistic Driving Experience of New Vehicle Concepts on the BMW Ride Simulator

2012-06-13
2012-01-1548
Nowadays, a continually growing system complexity due to the development of an increasing number of vehicle concepts in a steadily decreasing development time forces the engineering departments in the automotive industry to a deepened system understanding. The virtual design and validation of individual components from subsystems up to full vehicles becomes an even more significant role. As an answer to the challenge of reducing complete hardware prototypes, the virtual competence in NVH, among other methods, has been improved significantly in the last years. At first, the virtual design and validation of objectified phenomena in analogy to hardware tests via standardized test rigs, e.g. four poster test rig, have been conceived and validated with the so called MBS (Multi Body Systems).
Video

BMW Technology/Strategy Regarding EV

2011-11-04
The BMW Group has introduced electric cars to the market with the MINI E already in 2009. The next step will be the launch of the BMW ActiveE in 2011, followed by the revolutionary Mega City Vehicle in 2013. The presentation will explain the BMW Group strategy for implementing sustainable mobility. A focus will be emobility, the use of carbon fiber and the holistic sustainability approach of BMW Group?s project i. Reference will be made to the research results of the MINI E projects in the US and in Europe. Presenter Andreas Klugescheid, BMW AG
Journal Article

Hydrogen Fuel Consumption Correlation between Established EPA Measurement Methods and Exhaust Emissions Measurements

2008-04-14
2008-01-1038
The development of hydrogen-fueled vehicles has created the need for established fuel consumption testing methods. Until now the EPA has only accepted three methods of hydrogen fuel consumption testing, gravimetric, PVT (stabilized pressure, volume and temperature), and Coriolis mass flow; all of which necessitate physical measurements of the fuel supply [1]. BMW has developed an equation and subsequent testing methods to accurately and effectively determine hydrogen fuel consumption in light-duty vehicles using only exhaust emissions. Known as “Hydrogen-Balance”, the new equation requires no changes to EPA procedures and only slight modifications to most existing chassis dynamometers and CVS (Constant Volume Sampling) systems. The SAE 2008-01-1036, also written by BMW, explains the background as well as required equipment and changes to the CVS testing system. This paper takes hydrogen balance further by testing it against the three EPA established forms of fuel consumption.
Journal Article

Possible Influences on Fuel Consumption Calculations while using the Hydrogen-Balance Method

2008-04-14
2008-01-1037
The Hydrogen-Balance equation makes it possible to calculate the fuel economy or fuel consumption of hydrogen powered vehicles simply by analyzing exhaust emissions. While the benefits of such a method are apparent, it is important to discuss possible influencing factors that may decrease Hydrogen-Balance accuracy. Measuring vehicle exhaust emissions is done with a CVS (Constant Volume Sampling) system. While the CVS system has proven itself both robust and precise over the years, utilizing it for hydrogen applications requires extra caution to retain measurement accuracy. Consideration should be given to all testing equipment, as well as the vehicle being tested. Certain environmental factors may also play a role not just in Hydrogen-Balance accuracy, but as also in other low emission testing accuracy.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

Heavy Truck Frontal Crash Protection System Development

2007-10-30
2007-01-4289
Heavy trucks are produced with a great variety of vehicle configurations, operate over a wide range of gross vehicle weight and sometimes function in extreme duty environments. Frontal crashes of heavy trucks can pose a threat to truck occupants when the vehicle strikes another large object such as bridge works, large natural features or another heavy-duty vehicle. Investigations of heavy truck frontal crashes indicate that the factors listed above all affect the outcome for the driver and the resulting damage to the truck Recently, a new chassis was introduced for on-highway heavy truck models that feature frontal airbag occupant protection. This introduction presented an opportunity to incorporate the knowledge gained from crash investigation into the process for developing the crash sensor's parameter settings.
Technical Paper

Real-Time Estimation of the Exhaust Gas Recirculation Ratio Based on Cylinder Pressure Signals

2007-04-16
2007-01-0493
External Exhaust Gas Recirculation, EGR, is a central issue in controlling emissions in up-to-date diesel engines. An empirical model has been developed that calculates the EGR ratio as a function of the engine speed, the engine load and special characteristics of the heat release rate. It was found that three combustion characteristics correlate well with the EGR ratio. These characteristics are the ignition delay, the premixed combustion ratio and the mixing-controlled combustion ratio. The calculation of these characteristics is based on parameter subsets, which were determined using an optimization routine. The model presented was developed based on these optimized characteristics.
Technical Paper

Simulation Of NOx Storage and Reduction Catalyst: Model Development And Application

2007-04-16
2007-01-1117
To fulfill future emission standards for diesel engines, combined after-treatment systems consisting of different catalyst technologies and diesel particulate filters (DPF) are necessary. For designing and optimizing the resulting systems of considerable complexity, effective simulation models of different catalyst and DPF technologies have been developed and integrated into a common simulation environment called ExACT (Exhaust After-treatment Components Toolbox). This publication focuses on a model for the NOx storage and reduction catalyst as a part of that simulation environment. A heterogeneous, spatially one-dimensional (1D), physically and chemically based mathematical model of the catalytic monolith has been developed. A global reaction kinetic approach has been chosen to describe reaction conversions on the washcoat. Reaction kinetic parameters have been evaluated from a series of laboratory experiments.
Technical Paper

Numerical Simulation of Zeolite- and V-Based SCR Catalytic Converters

2007-04-16
2007-01-1136
A numerical model describing the ammonia based SCR process of NOX on zeolite catalysts is presented. The model is able to simulate coated and extruded monoliths. The development of the reaction kinetics is based on a study which compares the activity of zeolite and vanadium based catalysts. This study was conducted in a microreactor loaded with washcoat powder and with crushed coated monoliths. A model for the SCR reaction kinetics on zeolite catalysts is presented. After the parameterization of the reaction mechanism the reaction kinetics were coupled with models for heat and mass transport. The model is validated with laboratory data and engine test bench measurement data over washcoated monolith catalysts. A numerical simulation study is presented, aiming to reveal the differences between zeolite and vanadium based SCR catalysts.
Technical Paper

HSDI Diesel Engine Optimisation for GTL Diesel Fuel

2007-01-23
2007-01-0027
A Mercedes E320 CDI vehicle has been modified for more optimal operation on Gas-To-Liquids (GTL) diesel fuel, in order to demonstrate the extent of exhaust emission reductions which are enabled by the properties of this fuel. The engine hardware changes employed comprised the fitment of re-specified fuel injectors and the reduction of the compression ratio from 18:1 to 15:1, as well as a re-optimisation of the software calibration. The demonstration vehicle has achieved a NOx emission of less that 0.08 g/km in the NEDC test cycle, while all other regulated emissions still meet the Euro 4 limits, as well as those currently proposed for Euro 5. CO2 emissions and fuel consumption, were not degraded with the optimised engine. This was achieved whilst employing only cost-neutral engine modifications, and with the standard vehicle exhaust system (oxidation catalyst and diesel particulate filter) fitted.
X