Refine Your Search

Topic

Author

Search Results

Journal Article

Fuel Pressure and Charge Motion Effects on GDi Engine Particulate Emissions

2015-04-14
2015-01-0746
The focus of this study is investigation of the influence of fuel system pressure, intake tumble charge motion and injector seat specification - namely the static flow and the plume pattern - on the GDi engine particulate emissions under the homogenous combustion operation. The paper presents the spray characteristics and the single cylinder engine combustion data for the Delphi Multec® 14 GDi multi-hole fuel injector, capable of 40 [MPa] fuel system pressure. It provides results of a study of the influence of fuel pressure increase between 5 [MPa] to 40 [MPa], for three alternative seat designs, on the combustion characteristics, specifically the particulate and gaseous emissions and the fuel consumption. In conjunction with the fuel system pressure, the effect of enhanced charge motion on the combustion characteristics is investigated.
Technical Paper

Concept of Virtual Engine Control Module for High Quality and Time Efficient Verification and Testing of Powertrain Engine Control Module

2015-04-14
2015-01-0170
Wide varieties of vehicle Engine Management Systems are designed by different Tier#1 suppliers to meet highly complex requirements with the help of electronics. Emerging technologies and features of Engine Management Systems require a number of strategies for reducing the overall timing for verification with high quality testing. Analysis and decoding of data especially for highly critical and complex such as gasoline direct injection (GDi) engine fuel delivery output, high pressure fuel pump (HPFP), spark control output and different varieties of engine position signals are time consuming. This paper introduces Virtual Engine Control Module (VECM) technology to solve the problem of decoding complex signals and high level verification. A proposed test bench setup consists of VECM, ECM, simulator and real actuator load with complete software flashed inside the ECM.
Journal Article

Electromagnetic Coupling for Wire Twisting Pitch Optimization for SRS Applications

2014-04-01
2014-01-0222
In the sensitive automotive applications like the safety restraint systems (SRS), twisted lines can be used to link the components of the system because of their property of reduction of the electromagnetic interference (EMI) coupling. Compared to the parallel lines, the twisted lines present the drawback to consume more copper in their manufacturing due to the greater length of their conductors. A parametric study based on the numerical modeling and the measurement of twisted lines is conducted in order to analyze the effect of the twisting pitch and of the untwisted part of these lines on the level of EMI coupling. This study will enable to optimize these two parameters in order to reduce the level of EMI coupling as well as the length of the conductors of the lines.
Journal Article

Technical Issues of 100Mbit/s Ethernet Transmission based on Standard Automotive Wiring Components

2014-04-01
2014-01-0249
The presentation describes a technical solution for 100 Mbit/s Ethernet Data transmission cabling. This solution considers the specific requirements of automotive wiring harness and manufacturing. It bases on standard automotive connectors and headers. Currently the development of automotive electronic architecture considers central ECU or data backbone structure for the upcoming EE architecture (e. g. single ECU for network; SEN). For these structures solid and cost effective data backbone solutions are essential. Ethernet, a wide distributed and well-known bus system for office and industry data distribution provide a wide range of software tools and many physical layer solutions. Several cabling systems are available. Based on this we propose a solution for automotive application.
Journal Article

New Compact, High Efficiency, Variable Displacement Compressor for the Small Vehicle Segment

2014-04-01
2014-01-0630
As fuel prices continue to rise automotive manufacturers continue to push their suppliers to provide technology that improves the potential fuel efficiency of their applications. In addition there is an increasing trend towards smaller, lighter and more compact vehicles to mitigate the automotive carbon footprint. These movements necessitated the development of a new compact, low mass, variable displacement compressor to match the requirements for these smaller and more efficient vehicles. The new Delphi MVC, or Miniature Variable Compressor, meets these requirements by integrating the high efficiency of our latest swashplate variable compressor design into a compact and lightweight package. This design can be offered in a range of displacements from 80 to 100cc and can be offered as either internally or externally controlled to support the customer's needs.
Journal Article

Localized Cooling for Human Comfort

2014-04-01
2014-01-0686
Traditional vehicle air conditioning systems condition the entire cabin to a comfortable range of temperature and humidity regardless of the number of passengers in the vehicle. The A/C system is designed to have enough capacity to provide comfort for transient periods when cooling down a soaked car. Similarly for heating, the entire cabin is typically warmed up to achieve comfort. Localized heating and cooling, on the other hand, focuses on keeping the passenger comfortable by forming a micro climate around the passenger. This is more energy efficient since the system only needs to cool the person instead of the entire cabin space and cabin thermal mass. It also provides accelerated comfort for the passenger during the cooling down periods of soaked cars. Additionally, the system adapts to the number of passengers in the car, so as to not purposely condition areas that are not occupied.
Journal Article

Transient Liquid Phase Sintering (TLPS) Conductive Adhesives for High Temperature Automotive Applications

2014-04-01
2014-01-0797
Power electronics products such as inverters and converters involve the use of Thermal Interface Materials (TIMs) between high power packages and a heat exchanger for thermal management. Conventional TIMs such as thermal greases, gels, solders and phase change materials (PCMs) face challenges to meet the need of these products to operate reliably at much higher temperatures. This has driven the development of new TIMs such as Transient Liquid Phase Sintering (TLPS) Conductive Adhesives. TLPS adhesives have been developed for many potential applications due to various advantages like lead free, flux-less and particularly their low temperature processability, which enables the use of heat sensitive components in the design. With all these motivations, a project was launched and completed to assess TLPS adhesives as a unique TIM for high temperature automotive applications due to its high bulk thermal conductivity and metallic joint formation at interfaces.
Journal Article

Fuel System Pressure Increase for Enhanced Performance of GDi Multi-Hole Injection Systems

2014-04-01
2014-01-1209
The progressive trend towards the GDi engine downsizing, the focus on better fuel efficiency and performance, and the regulatory requirements with respect to the combustion emissions have brought the focus of attention on strategies for improvement of in-cylinder mixture preparation and identification and elimination of the sources of combustion emissions, in particular the in-cylinder particulate formation. This paper discusses the fuel system components, injector dynamics, spray characteristics and the single cylinder engine combustion investigation of a 40 [MPa] capable conventional GDi inwardly-opening multi-hole fuel injection system. It provides results of a study of the influence of fuel system pressure increase between 5 [MPa] to 40 [MPa], in conjunction with the injector static flow and spray pattern, on the combustion characteristics, specifically the particulate and gaseous emissions and the fuel economy.
Journal Article

Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine

2014-04-01
2014-01-1300
In previous work, Gasoline Direct Injection Compression Ignition (GDCI) has demonstrated good potential for high fuel efficiency, low NOx, and low PM over the speed-load range using RON91 gasoline. In the current work, a four-cylinder, 1.8L engine was designed and built based on extensive simulations and single-cylinder engine tests. The engine features a pent roof combustion chamber, central-mounted injector, 15:1 compression ratio, and zero swirl and squish. A new piston was developed and matched with the injection system. The fuel injection, valvetrain, and boost systems were key technology enablers. Engine dynamometer tests were conducted at idle, part-load, and full-load operating conditions. For all operating conditions, the engine was operated with partially premixed compression ignition without mode switching or diffusion controlled combustion.
Technical Paper

Thin-Film High Voltage Capacitors on Ultra-Thin Glass for Electric Drive Vehicle Inverter Applications

2014-04-01
2014-01-0417
The propulsion system in most Electric Drive Vehicles (EDVs) requires an internal combustion engine in combination with an alternating current (AC) electric motor. An electronic device called a power inverter converts battery DC voltage into AC power for the motor. The inverter must be decoupled from the DC source, so a large DC-link capacitor is placed between the battery and the inverter. The DC-link capacitors in these inverters negatively affect the inverters size, weight and assembly cost. To reduce the design/cost impact of the DC-link capacitors, low loss, high dielectric constant (κ) ferroelectric materials are being developed. Ceramic ferroelectrics, such as (Pb,La)(Zr,Ti)O3 [PLZT], offer high dielectric constants and high breakdown strength. Argonne National Laboratory and Delphi Electronics & Safety have been developing thin-film capacitors utilizing PLZT.
Technical Paper

Methodology to Compare Effectiveness of Lubricating Additives in a Polymeric Matrix

2014-04-01
2014-01-1034
A majority of the plastics manufacturing operations are dependent on the formability of the molten thermoplastics. Ability of the material to flow at a set temperature influences the formability and the overall polymer melt process. Lubricating additive technologies are being developed to engineer the melt flow performance of the resin, promoting the compounding and molding process such as to reduce torque on the motor, reduced shear degradations, enhance uniform filling of hard-to-fill section, promoting thin wall molding, and influence the overall cycle time. Various lubricants are used in formulations to supplement superior flow and metal release with minimal effect on mechanical properties. This paper discusses the methodology to characterize the effectiveness of melt flow additives through comparing two different processing aids in Polybutylene terephthalate (PBT) polyester filled and unfilled matrix and imply differences in processing.
Technical Paper

Post-Molding Crosslinking of Polyethylene in Automotive Connection Systems

2014-04-01
2014-01-1038
Twenty plies of low density polyethylene (LDPE) were stacked and irradiated with 200 kGy of 5 MeV electron beam. The plies were analyzed by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) for crosslink density using melting point depression and equilibrium storage modulus respectively. Infra-red spectroscopic analysis was conducted to examine the samples for the presence of chemical modification. The thermal stability of the irradiated samples and an unexposed control was investigated using Thermogravimetric Analysis (TGA). Results were utilized in assessing the viability of crosslinking products after the molding process to produce articles with improved resistance to temperature.
Technical Paper

Primary Atomization of a GDi Multi-Hole Plume Using VOF-LES Method

2014-04-01
2014-01-1125
This study is concerned with quantitative analysis of the primary atomization, regarding the droplet size-velocity distribution function, of a multi-hole GDi plume through application of the Volume-of-Fluid Large Eddy Simulation (VOF-LES) method. The distinguishing feature of this study is the inclusion of an accurate seat /nozzle flow domain into the simulation. A VOF-LES study of the seat-nozzle flow and the near-field primary atomization of a single plume of a GDi multi-hole seat is performed. The geometry pertains to a purpose-built 3-hole GDi seat with three identical flow hole and counter-bore nozzles, arranged with 120° circumferential spacing. The VOF-LES prediction of the jet primary breakup structure and near-field macroscale is compared with spray imaging data. The droplet size and velocity distributions within a 4mm vicinity of the nozzle are analyzed. The results show production of a wide droplet size distribution through the jet primary atomization.
Technical Paper

Acoustic Holography for High Pressure Fuel Injector Noise Measurements

2014-04-01
2014-01-1679
The audible noise characteristics of direct injectors are important to OEM customers when selecting a high pressure gasoline fuel injector. The activation noise is an undesirable aspect that needs to be minimized through injector design, injector mounting, and acoustic treatments. Experimentally identifying the location and frequency of noise sources is beneficial to the improvement of injector designs. Acoustic holography is a useful tool in locating these noise sources by measuring a sound pressure field with multiple microphones and using this field to estimate the source location. For injector testing, the local boundary conditions of the noise source will affect the resultant sound field. Therefore, how the injector is mounted within the test fixture will change the resultant noise field measured. In this study, the process of qualifying an acoustic holography fixture using measurement system analysis for GDi fuel injector testing will be documented.
Technical Paper

Ethanol Flex Fuel system with Delphi Heated injector application

2014-04-01
2014-01-1369
After the second worldwide oil crisis, Brazil put in place by 1975 a strategic plan to stimulate the usage of ethanol (from sugar cane), to be mixed to the gasoline or to be sold as 100% ethanol fuel (known as E100). To enable an engine to operate with both gasoline and ethanol (and their mixtures), by 2003 the “Flex Fuel” technology was implemented. By 2012 calendar year, from a total of about 3.8 million vehicles sold in the Brazilian market, 91% offered the “Flex Fuel” technology, and great majority used a gasoline sub-tank to assist on cold starts (typically below 15°C, where more than 85% of ethanol is present in fuel tank). The gasoline sub-tank system suffers from issues such as gasoline deterioration, crash-worthiness and user inconvenience such as bad drivability during engine warm up phase. This paper presents fuel injector technologies capable of rapidly electrically heating the ethanol fuel for the Brazilian transportation market.
Technical Paper

Innovative Sprays and Particulate Reduction with GDi Injectors

2014-04-01
2014-01-1441
Innovative nozzle hole shapes for inwardly opening multi-hole gasoline direct injectors offer opportunities for improved mixture formation and particulate emissions reduction. Compared to increased fuel pressure, an alternative associated with higher system costs and increased pumping work, nozzle hole shaping simply requires changes to the injector nozzle shape and may have the potential to meet Euro 6 particulate regulations at today's 200 bar operating pressure. Using advanced laser drilling technology, injectors with non-round nozzle holes were built and tested on a single-cylinder engine with a centrally-mounted injector location. Particulate emissions were measured and coking deposits were imaged over time at several operating fuel pressures. This paper presents spray analysis and engine test results showing the potential benefits of alternative non-round nozzle holes in reducing particulate emissions and enhancing robustness to coking with various operating fuel pressures.
Technical Paper

The Effects of GDi Fuel Pressure on Fuel Economy

2014-04-01
2014-01-1438
To meet future particulate number regulations, one path being investigated is higher fuel pressures for direct injection systems. At operating pressures of 30 MPa to 40 MPa, the fuel system components must be designed to withstand these pressures and additional power is required by the pump to pressurize the fuel to higher pressures than the nominal 15MPa to 20MPa in use today. This additional power to the pump can affect vehicle fuel economy, but may be partially offset by increases in combustion efficiency due to improved spray mixture preparation. This paper examines the impact on fuel economy from increased system fuel pressures from a combination of test results and simulations. A GDi pump and valvetrain model has been developed and correlated to existing pump torque measurements and subsequently used to predict the increase in torque and associated impact on fuel economy due to higher GDi system pressures.
Technical Paper

GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods

2014-04-01
2014-01-1434
Development of in-cylinder spray targeting, plume penetration and atomization of the gasoline direct-injection (GDi) multi-hole injector is a critical component of combustion developments, especially in the context of the engine downsizing and turbo-charging trend that has been adopted in order to achieve the European target CO2, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards the optimization of injector nozzle designs in order to improve spray characteristics. Development of accurate predictive models is desired to understand the impact of nozzle design parameters as well as the underlying physical fluid dynamic mechanisms resulting in the injector spray characteristics. This publication reports Large Eddy Simulation (LES) analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries.
Technical Paper

Application of 48 Volt for Mild Hybrid Vehicles and High Power Loads

2014-04-01
2014-01-1790
During the evolution of Hybrid vehicles as well as electrical vehicles the need for an additional Voltage level was defined for the utilization of high power loads like electrical compressors, electrical heaters as well as power steering and electrical pumps. The main systems benefit is the generation of approximately 12 kW electrical power by a traditional belt driven Generator. This allows boost function for acceleration and recuperation for mild hybrid vehicles with the target to reduce up to 15% CO2 by keeping the traditional thermal based engines. Delphi has developed systems and components that meet the special 48 Volt related electrical requirements on arcing, hot plugging and corrosion. Our benefit is the long term expertise within the total system know how and the derived technical specification and needs.
Technical Paper

Energy Efficiency Impact of Localized Cooling

2014-04-01
2014-01-0695
Traditional vehicle air conditioning systems are designed to cool the entire cabin to provide passenger comfort. Localized cooling, on the other hand, focuses on keeping the passenger comfortable by creating a micro climate around the passenger. Such a system also easily adapts to the number of passengers in the car and enables zonal control. The net impact of the localized cooling is that equivalent comfort can be achieved at reduced HVAC energy consumption rate. The present paper reports on a vehicle implementation of localized cooling using Thermoelectric Devices and the resulting energy saving.
X