Refine Your Search

Topic

Search Results

Technical Paper

Integrated Powertrain Control

2010-04-12
2010-01-0368
This paper presents a newly developed integrated powertrain control system. The system coordinates the controls between engine and transmission to optimize powertrain operation for drive quality and fuel economy. This new control system uses the desired engine power as the common load variable for both engine and transmission control instead of throttle as is used in conventional powertrain controls. The main advantages to this control system are improved fuel economy and drive quality. Other advantages and a brief description of the control system will be described in more detail in the following discussion.
Journal Article

Fuel Efficiency Improvements from Lean, Stratified Combustion with a Solenoid Injector

2009-04-20
2009-01-1485
In light of the growing emphasis on CO2 emissions reduction, Delphi has undertaken an internal development program to show the fuel economy benefits of lean, stratified combustion with its outwardly-opening solenoid injector in a vehicle environment. This paper presents the status of this ongoing development activity which is not yet completed. Progress to date includes a logical progression from single- and multi-cylinder dynamometer engines to the vehicle environment. The solenoid-actuated injector used in this development has an outwardly-opening valve group to generate a hollow-cone spray with a stable, well-defined recirculation zone to support spray-guided stratification in the combustion chamber. The engine management system of the development vehicle was modified from series-production configuration by changing the engine control unit to permit function development and calibration.
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

Gasoline Distillation Effect on Vehicle Cold Start Driveability

2007-10-29
2007-01-4073
Cold start vehicle driveability performance depends on many parameters, one of which is the distillation character of the fuel. In the late 90's, a gasoline driveability index (DI) was developed for spark ignited combustion vehicles by a consortium of automotive and petroleum industry scientists based on correlation studies between controlled fuel quality matrices and vehicle performance under specific ambient conditions. The DI equation uses a weighted sum of gasoline distillation temperatures at the 10, 50 and 90 percent evaporation volumes, commonly called T10, T50 and T90. These three distillation volatility points are specified by the ASTM International D 4814 fuel specification and are seasonally adjusted. This paper studies the cold start driveability performance of Federal EPA Bin 5 and Bin 8 vehicles with respect to fuel distillation characteristics at temperatures other than T10, T50 and T90.
Technical Paper

Two-Mode Urban Transit Hybrid Bus In-Use Fuel Economy Results from 20 Million Fleet Miles

2007-04-16
2007-01-0272
The General Motors Allison Two-Mode compound split parallel hybrid EP system for transit buses has been in production for over three years, accumulating over 20 million fleet miles. During this period of operation, extensive fuel economy analysis has been performed over multiple use cycles in multiple locations. This paper describes the in-use fuel economy results, as well as the hybrid system mode operations, the component utilization, and the controls improvements to maximize the hybrid fuel economy. Actual in-use data will be presented from individual vehicles, as well as the fleet averages encompassing a broad range of duty cycles. A chassis dynamometer testing results are discussed as an alternative evaluation method.
Technical Paper

General Motors Hydra-Matic & Ford New FWD Six-Speed Automatic Transmission Family

2007-04-16
2007-01-1095
The Hydra-Matic 6T70 is General Motors first model of a new, two-variant front wheel drive (FWD) six speed automatic transmission family. The second variant is a higher capacity model, the 6T75. The transmission was co-developed with Ford Motor Company. The 6F50 is the Ford variant that aligns with the GM 6T70 transmission. Approximately eighty five percent of the hardware is shared or common between the GM and Ford transmission variants. Ford will also have a higher capacity variant the 6F55 to align with the GM 6T75. The first GM application is the Saturn Aura for the 2007 Model Year. The Ford Edge and Lincoln MKX in MY 2007 will be the first applications for the 6F50. While the Hydra-Matic and Ford FWD six-speed family was designed with two variants in mind, the designed in modularity requires only changes to the second and third axis and case housings depending on specific torque requirements. This modular design enables a tremendous amount of part sharing.
Technical Paper

Co-Simulation Analysis of Transient Response and Control for Engines with Variable Valvetrains

2007-04-16
2007-01-1283
Modern engines are becoming highly complex, with several strongly interactive subsystems - - variable cam phasers on both intake and exhaust, along with various kinds of variable valve lift mechanisms. Isolated component models may not yield adequate information to deal with system-level interactive issues, especially when it comes to transient behavior. In addition, massive amounts of expensive experimental work will be required for optimization. Recent computing speed improvements are beginning to permit the use of co-simulation to couple highly detailed and accurate submodels of the various engine components, each created using the most appropriate available simulation package. This paper describes such a system model using GT-Power to model the engine, AMESim to model cam phasers and the engine lubrication system, and Matlab/Simulink to model the engine controllers and the vehicle.
Technical Paper

Clutch-to-Clutch Transmission Control Strategy

2007-04-16
2007-01-1313
An automatic transmission control system for clutch-to-clutch shifting systems has been developed. This enables the new General Motors Powertrain families of rear- and front-wheel drive transmissions to meet stringent cost, mass, and packaging reqiurements, while providing driveability and fuel economy improvements over the four- and five-speed transmissions that they replace. The design team utilized several new technologies and methods to robustly engineer a control system that allowed excellent first time capability and reduced calibration intensity. Innovative technical approaches were developed in several key mechatronics areas.
Technical Paper

2-step Variable Valve Actuation: System Optimization and Integration on an SI Engine

2006-04-03
2006-01-0040
2-step variable valve actuation using early-intake valve closing is a strategy for high fuel economy on spark-ignited gasoline engines. Two discrete valve-lift profiles are used with continuously variable cam phasing. 2-step VVA systems are attractive because of their low cost/benefit, relative simplicity, and ease-of-packaging on new and existing engines. A 2-step VVA system was designed and integrated on a 4-valve-per-cylinder 4.2L line-6 engine. Simulation tools were used to develop valve lift profiles for high fuel economy and low NOx emissions. The intake lift profiles had equal lift for both valves and were designed for high airflow & residual capacity in order to minimize valvetrain switching during the EPA drive cycle. It was determined that an enhanced combustion system was needed to maximize fuel economy benefit with the selected valve lift profiles. A flow-efficient chamber mask was developed to increase in-cylinder tumble motion and combustion rates.
Technical Paper

General Motors New Hydra-Matic RWD Six-Speed Automatic Transmission Family

2006-04-03
2006-01-0846
The Hydra-Matic 6L80 is General Motors first model of a new, four-variant, rear wheel drive (RWD) six speed automatic transmission family. The four variants are the 6L45, 6L50, 6L80 and 6L90. The new, high performance 6L80 will debut in 2006 model year performance vehicles, including the Chevrolet Corvette C6 and new Cadillac STS-V and XLR-V. By 2007, GM expects to use the RWD six speed family in as many as 25 different car, truck and SUV models in RWD, 4WD and all-wheel drive configurations. While the Hydra-Matic RWD six-speed family was designed with four variants, the built in modularity requires only two different basic diameters of parts and “flexing” on part width (length) depending on specific torque requirements. This built in modular design enables a tremendous amount of part sharing and part scaling. Modularity minimizes engineering resources, improves investment and piece cost, speed to market and allows for a wide bandwidth of vehicle and engine applications.
Technical Paper

A Systematic Experimental Investigation of Pd-Based Light-Off Catalysts

2005-10-24
2005-01-3848
Close-coupled or manifold catalysts have been extensively employed to reduce emissions during cold start by achieving quick catalyst light-off. These catalysts must have good thermal durability, high intrinsic light-off activity and high HC/CO/NOx conversions at high temperature and flow conditions. A number of studies have been dedicated to engine control, manifold design and converter optimization to reduce cold start emissions. The current paper focuses on the effect of catalyst design parameters and their performance response to different engine operating conditions. Key design parameters such as catalyst formulation (CeO2 vs. non CeO2), precious metal loading and composition (Pd vs. Pd/Rh), washcoat loading, catalyst thermal mass, substrate properties and key application (in use) parameters such as catalyst aging, exhaust A/F ratio, A/F ratio modulation, exhaust temperature, temperature rise rate and exhaust flow rate were studied on engine dynamometers in a systematic manner.
Technical Paper

Low Volatility Fuel Delivery Control during Cold Engine Starts

2005-04-11
2005-01-0639
The intensity of a combustion flame ionization current signal (ionsense) can be used to monitor and control combustion in individual cylinders during a cold engine start. The rapid detection of poor or absence of combustion can be used to determine fuel delivery corrections that may prevent engine stalls. With the ionsense cold start control active, no start failures were recorded even when the initially (prior to ionsense correction) commanded fueling had failed to produce a combustible mixture. This new dimension in fuel control allows for leaner cold start calibrations that would still be robust against the possible use of low volatility gasoline. Consequently, when California Phase 2 fuel is used, cold start hydrocarbon emissions could be lowered without the risk of an engine stall if the appropriate fuel is replaced with a less volatile one.
Technical Paper

Low-Speed Carbon Fiber Torque Capacity and Frictional Properties Test for ATFs

2004-10-25
2004-01-3026
Since the mid-1990's, original equipment manufacturers (OEMs) of automobiles have been implementing torque converter clutches in automatic transmissions with a continuous, controlled slip mode, in order to improve the fuel economy of their vehicles. These Continuously Slipping Torque Converter Clutches (CSTCCs) are prone to an undesirable phenomenon commonly called shudder. This phenomenon has been attributed to specific shapes or slopes in the friction coefficient versus sliding speed curve of the fluid/clutch interface. Here, a method is explained that was developed to be able to screen fluids for shudder tendency, both in fresh and used states. Also included is a description of the reason for implementing CSTCCs, some background on shudder, and supporting data showing how the test method can distinguish between fluids that have different shudder tendencies.
Technical Paper

Combustion Assisted Belt-Cranking of a V-8 Engine at 12-Volts

2004-03-08
2004-01-0569
Implementation of engine turnoff at idle is desirable to gain improvements in vehicle fuel economy. There are a number of alternatives for implementation of the restarting function, including the existing cranking motor, a 12V or 36V belt-starter, a crankshaft integrated-starter-generator (ISG), and other, more complex hybrid powertrain architectures. Of these options, the 12V belt-alternator-starter (BAS) offers strong potential for fast, quiet starting at a lower system cost and complexity than higher-power 36V alternatives. Two challenges are 1) the need to accelerate a large engine to idle speed quickly, and 2) dynamic torque control during the start for smoothness. In the absence of a higher power electrical machine to accomplish these tasks, combustion-assisted starting has been studied as a potential method of aiding a 12V accessory drive belt-alternator-starter in the starting process on larger engines.
Technical Paper

Evaluation of Power Devices for Automotive Hybrid and 42V Based Systems

2004-03-08
2004-01-1682
With the requirements for reducing the emissions and improving the fuel economy, the automotive companies are developing hybrid, 42 V and fuel cell vehicles. Power electronics is an enabling technology for the development of environmental friendly vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, the requirements of the power semiconductor devices and the criteria for selecting the power devices for various types of low emission vehicles are presented. A comparative study of the most commonly used power devices is presented. A brief review of the future power devices that would enhance the performance of the automotive power conversion systems is also presented.
Technical Paper

Design and Testing of a Prototype Midsize Parallel Hybrid-Electric Sport Utility

2004-01-25
2004-01-3062
The University of Wisconsin - Madison hybrid vehicle team has designed and constructed a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2003 competition. This is a multi-year project utilizing a 2002 4.0 liter Ford Explorer as the base vehicle. Wisconsin's FutureTruck, nicknamed the ‘Moolander’, weighs 2000 kg and includes a prototype aluminum frame. The Moolander uses a high efficiency, 1.8 liter, common rail, turbo-charged, compression ignition direct injection (CIDI) engine supplying 85 kW of peak power and an AC induction motor that provides an additional 60 kW of peak power. The 145 kW hybrid drivetrain will out-accelerate the stock V6 powertrain while producing similar emissions and drastically reducing fuel consumption. The PNGV Systems Analysis Toolkit (PSAT) model predicts a Federal Testing Procedure (FTP) combined driving cycle fuel economy of 16.05 km/L (37.8 mpg).
Technical Paper

New On-Board Power Generation Technologies for Automotive Auxiliary Power Units

2003-06-23
2003-01-2256
Improving fuel economy, emissions, passenger comfort and convenience, safety, and vehicle performance in the automobile is resulting in the growth of electrical loads. In order to meet these electrical load demands and to meet the requirement of power generation when the engine is off, several technologies are on the horizon for on-board power generation in the vehicles. In this paper, new on-board power generation technologies based on the solid oxide fuel cell (SOFC), proton exchange membrane (PEM) fuel cell, thermo-photovoltaic (TPV) system, and diamond or carbon nanostructures are compared in terms power density, cost, and long term feasibility for automotive applications.
Technical Paper

Powertrain Architecture and Controls Integration for GM's Hybrid Full-Size Pickup Truck

2003-03-03
2003-01-0085
General Motors plans to introduce a hybrid version of its popular light-duty full-size (Silverado/Sierra) pickup truck. Primary emphasis of the hybrid propulsion system for this truck is on maximizing fuel savings at minimum cost and without sacrificing performance or driveability. The hybrid powertrain features a novel, compact method of integrating an electric motor/generator between the largely unchanged engine and transmission. Extensive energy analysis and several unique control strategies are being used to meet the vehicle's performance, driveability, and emissions objectives. This paper will focus mainly on the powertrain integration and on powertrain controls for the hybrid propulsion system.
Technical Paper

Electric Machine Powertrain Integration for GM's Hybrid Full-Size Pickup Truck

2003-03-03
2003-01-0084
General Motors plans to introduce a hybrid version of its popular light-duty full-size (Silverado/Sierra) pickup truck. The program imperative of minimal vehicle architecture change drove a highly integrated powertrain solution. The hybrid powertrain features a novel, compact method of integrating an electric motor/generator between the largely unchanged engine and transmission, preserving their locations. From the targeted hybrid functions, power and energy specifications are derived. Specific design aspects and performance examples relating to the motor/generator packaging, torque converter, and overall vehicle driveabiltiy are discussed.
Technical Paper

Economic Analysis of Powertrain Control Technologies

2002-10-21
2002-21-0035
Regulatory and market pressures continue to challenge the automotive industry to develop technologies focused on reducing exhaust emissions and improving fuel economy. This paper introduces a practical model, which evaluates the economic value of various technologies based on their ability to reduce fuel consumption, improve emissions or provide consumer benefits such as improved performance. By evaluating the individual elements of economic value as viewed by the OEM manufacturer, while keeping the end consumer in mind, technology selection decisions can be made. These elements include annual fuel usage, vehicle performance, mass reduction and emissions, among others. The following technologies are discussed and evaluated: gasoline direct injection, variable valvetrain technologies, common-rail diesel and hybrid vehicles.
X