Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

ATV THERMAL CONTROL: Architecture and Jules Verne First Flight Results

2009-07-12
2009-01-2474
After several years of development the first European Automated Transfer Vehicle (ATV) developed by ESA called Jules Verne completed successfully its seven-month ISS logistics mission. Launched the 9 March 2008 on an Ariane 5 launcher, the ATV performed the 3 April 2008 its rendezvous and docking to the International Space Station to which it remained attached for five months. This paper presents in a first part the ATV thermal control architecture based on a innovative active thermal control design built around 40 Variable Conductance Heat Pipes (VCHP) controlling the heat rejection and in a second part the in-flight thermal control behavior of the ATV Jules Verne observed during the seven months mission in both free flight and attached to ISS phases.
Technical Paper

Thermal - Power - Software Development and Validation on ATV Vehicle

2009-07-12
2009-01-2558
Jules Verne (JV) is the name of the first Automated Transfer Vehicle (ATV) developed by ASTRIUM Space Transportation on behalf of European Space Agency (ESA). JV was launched the 9 March 2008 by ARIANE 5 and performed the 3 April 2008 its automatic rendezvous and docking to the International Space Station (ISS) to which it remained attached up to the 5 September 2008. In the meantime, JV has provided the ISS with dry and fluid cargo and performed one refueling, four ISS re-boosts and one Debris Avoidance Maneuver. JV completed its successful mission by offloading waste and was destroyed during its re-entry the 29 September 2008. Generally, development and verification of Power management rely on classical thermal and electrical engineering.
Technical Paper

An Experimental Model of a Biological Life Support System with the Intra-system Mass Exchange Closed to a High Degree, Based on “Biological Combustion” of Dead-end Plant Residues

2003-07-07
2003-01-2417
This work concerns the model of a biological life support system consisting of higher plants, a unit of “biological combustion”, a physicochemical reactor, and 1/30 of a human. The cycling of the main biogenic elements of the system, water, and carbon dioxide was closed to a high degree (more than 95%). Experimental-theoretical analysis of the cycling processes in the system was based on the calculations of mass exchange rates dynamics and some stoichiometric equations. The model was designed for the study of mechanisms of material transformation and the directions of mass exchange processes in the artificial ecosystems.
Technical Paper

Development and Verification of the New Thermal Control System of the Automated Transfer Vehicle

2003-07-07
2003-01-2466
The Automated Transfer Vehicle will provide ISS with reboost, attitude control functions, with water, gas and propellant and with dry cargo. It is a 20 tons expendable vehicle launched by Ariane. It performs a rendezvous and docking with the Russian Segment. It remains attached up to 6 months before a destructive reentry. During PDR campaign, it was decided to change the ATV Thermal Control System from semi-passive (see reference 1) to active system to comply with electrical power budget and get the ATV power autonomy. This system is based on 40 Variable Conductance Heat Pipes controlling the heat rejection of the avionics items toward space. This paper presents the new thermal control system of the ATV and its verification and qualification logic.
Technical Paper

Thermal Control System of the Automated Transfer Vehicle

2000-07-10
2000-01-2307
The Automated Transfer Vehicle (ATV) is a European Space Agency (ESA) servicing and logistics transportation system for the periodic re-supply of the International Space Station (ISS). The ATV will be launched by Ariane 5 and will provide the following services to the ISS: refuelling of the ISS (transfer of fuel from ATV to the station), reboost of the ISS (increasing the station’s orbit altitude, using the ATV’s propulsion system), delivery of cargo such as compressed air, water and pressurised payloads to the station, destruction of waste from the station. The ATV is composed of the so-called Spacecraft (SC) and an Integrated Cargo Carrier (ICC). The Spacecraft includes the propulsion, reboost and attitude control systems, the avionics and the solar generator system.
Technical Paper

Thermal Control Architecture of the Automated Transfer Vehicle

1998-07-13
981778
The Automated Transfer Vehicle (ATV) is a European Space Agency autonomous, expendable logistic transportation system for Low Earth Orbit. The ATV will be launched by Ariane 5 and its mission is to contribute to the logistic servicing of the International Space Station: via the delivery of a cargo (crew items, scientific experiments, spare parts..) as well as of fluids such as propellant, water and compressed air via the provision of an extra service consisting of retrieving the station wastes when departing (replacing the upcoming cargo) and getting rid of them through the final destructive atmospheric re-entry of the ATV itself via the contribution to the orbit control of ISS by providing a reboost and attitude control capability to the ISS. The ATV consists of a Spacecraft and an Integrated Cargo Carrier. The Spacecraft includes all subsystems necessary for the automated flight to the ISS and for the reboost, including the propellant tanks and the thrusters.
Technical Paper

European Polar Platform ENVISAT-1 Mission: Thermal Design and Payload Thermal Accommodation

1994-06-01
941572
The European Polar Platform is a remote sensing satellite with the primary objective, in the ENVISAT-1 P/L configuration, to monitor and study the earth and its environment. The platform thermal design is passive assisted by heaters. Externally mounted P/Ls are responsible for their-own thermal control and are required to be thermally decoupled from the platform. The P/L thermal design is largely dependent on their detectors required temperature and stability. A wide range of design solutions is found: Stirling cycle coolers, Peltier elements, passive radiant coolers, heat pipe radiators. This paper describes the overall thermal design of the platform and the P/Ls, the principles of the selected ENVISAT-1 P/L accommodation, the relevant P/L to platform I/F design solutions and outlines the platform and P/Ls thermal verification logic.
Technical Paper

Thermal Control Design of the European Polar Platform

1992-07-01
921326
The ESA Polar Platform, as part of the ESA Columbus Development Programme, is scheduled to be launched as single passenger by an Ariane 5 vehicle in mid 1998. The multimission platform is designed to accommodate a wide range of payload complements to be flown on a series of missions in order to satisfy the growing future earth observation needs in continuation of the current ERS programme. Multi-mission capability is achieved by design modularity wherever feasible and cost-effective. This paper describes the thermal control design of the Polar Platform which follows its modular configuration and which has to cope with a wide range of generic performance parameters, whilst being adaptable to provide optimised performance for specific missions. Special thermal control features are highlighted as the software and hardware controlled heater systems, thermal doublers using carbon / carbon material and the battery compartment heat pipe radiator.
X