Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Journal Article

Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

2022-06-15
2022-01-0941
In order to predict reality as accurately as possible leads to the fact that numerical models in automotive vibroacoustic problems become increasingly high dimensional. This makes applications with a large number of model evaluations, e.g. optimization tasks or uncertainty quantification hard to solve, as they become computationally very expensive. Engineers are thus faced with the challenge of making decisions based on a limited number of model evaluations, which increases the need for data-efficient methods and reduced order models. In this contribution, variational autoencoders (VAEs) are used to reduce the dimensionality of the vibroacoustic model of a vehicle body and to find a low-dimensional latent representation of the system.
Technical Paper

Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions

2020-04-14
2020-01-1299
The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased.
Technical Paper

Development of the TOP TIERTM Diesel Standard

2019-04-02
2019-01-0264
The TOP TIERTM Diesel fuel standard was first established in 2017 to promote better fuel quality in marketplace to address the needs of diesel engines. It provides an automotive recommended fuel specification to be used in tandem with regional diesel fuel specifications or regulations. This fuel standard was developed by TOP TIERTM Diesel Original Equipment Manufacturer (OEM) sponsors made up of representatives of diesel auto and engine manufacturers. This performance specification developed after two years of discussions with various stakeholders such as individual OEMs, members of Truck and Engine Manufacturers Association (EMA), fuel additive companies, as well as fuel producers and marketers. This paper reviews the major aspects of the development of the TOP TIERTM Diesel program including implementation and market adoption challenges.
Technical Paper

Daimler Aeroacoustic Wind Tunnel: 5 Years of Operational Experience and Recent Improvements

2018-09-24
2018-01-5038
Since 2013 the new Daimler Aeroacoustic Wind Tunnel (AAWT) is in operation at the Mercedes-Benz Technology Center in Sindelfingen, Germany. This construction was the second stage of a wind tunnel center project, which was launched in 2007 and started with the climatic wind tunnels including workshop and office areas. The AAWT features a test facility for full-scale cars and vans with a nozzle exit area of 28 m2, a five-belt system, and underfloor balance to measure forces with best possible road simulation. With a remarkable low background noise level of the wind tunnel, vehicle acoustics can be investigated under excellent conditions using high-performance measurement systems. An overview is given about the building and the design features of the wind tunnel layout. The aerodynamic and aeroacoustic properties are summarized. During the first years of operation, further improvements regarding the wind tunnel background noise and vehicle handling were made.
Technical Paper

Development of a LIF-Imaging System for Simultaneous High-Speed Visualization of Liquid Fuel and Oil Films in an Optically Accessible DISI Engine

2018-04-03
2018-01-0634
Downsizing and direct injection in modern DISI engines can lead to fuel impinging on the cylinder walls. The interaction of liquid fuel and engine oil due to fuel impinging on the cylinder wall causes problems in both lubrication and combustion. To analyze this issue with temporal and spatial resolution, we developed a laser-induced fluorescence (LIF) system for simultaneous kHz-rate imaging of fuel and oil films on the cylinder wall. Engine oil was doped with traces of the laser dye pyrromethene 567, which fluoresces red after excitation by 532 nm laser radiation. Simultaneously, the liquid fuel was visualized by UV fluorescence of an aromatic “tracer” in a non-fluorescent surrogate fuel excited at 266 nm. Two combinations of fuel and tracer were investigated, iso-octane and toluene as well as a multi-component surrogate and anisole. The fluorescence from oil and fuel was spectrally separated and detected by two cameras.
Technical Paper

Motion Cueing Algorithm for a 9 DoF Driving Simulator: MPC with Linearized Actuator Constraints

2018-04-03
2018-01-0570
In times when automated driving is becoming increasingly relevant, dynamic simulators present an appropriate simulation environment to faithfully reproduce driving scenarios. A realistic replication of driving dynamics is an important criterion to immerse persons in the virtual environments provided by the simulator. Motion Cueing Algorithms (MCAs) compute the simulator’s control input, based on the motions of the simulated vehicle. The technical restrictions of the simulator’s actuators form the main limitation in the execution of these input commands. Typical dynamic simulators consist of a hexapod with six degrees of freedom (DoF) to reproduce the vehicle motion in all dimensions. Since its workspace dimensions are limited, significant improvements in motion capabilities can be achieved by expanding the simulator with redundant DoF by means of additional actuators.
Technical Paper

Update on A-Pillar Overflow Simulation

2018-04-03
2018-01-0717
The management of surface water flows driven from the wind screen by the action of wipers and aerodynamic shear is a growing challenge for automotive manufacturers. Pressure to remove traditional vehicle features, such as A-Pillar steps for aesthetic, aeroacoustic and aerodynamic reasons increases the likelihood that surface water may be convected over the A-Pillar and onto the front side glass where it can compromise drivers’ vision. The ability to predict where and under which conditions the A-Pillar will be breached is important for making correct design decisions. The use of numerical simulation in this context is desirable, as experimental testing relies on the use of aerodynamics test properties which will not be fully representative, or late-stage prototypes, making it difficult and costly to correct issues. This paper provides an update on the ability of simulation to predict A-Pillar overflow, comparing physical and numerical results for a test vehicle.
Technical Paper

Evaluation and Improvement of Greenhouse Wind Noise of a SGMW SUV using Simulation Driven Design

2018-04-03
2018-01-0737
At SAIC-GM-Wuling (SGMW) the greenhouse wind noise performance of their vehicles has gained a lot of attention in the development process. In order to evaluate and improve the noise quality of a newly developed SUV a digital simulation based process has been employed during the early stage of the design. CFD simulation was used for obtaining the flow induced exterior noise sources. Performance metrics for the quality were based on interior noise levels which were calculated from the exterior sources using a SEA approach for the noise transmission through the glass panels and propagation to the driver’s or passenger’s head space. Detailed analysis of the CFD results allowed to identify noise sources and related flow structures. Based on this analysis, design modifications were then applied and tested in a sequential iterative process. As a result an improvement of more than 2 dB in overall sound pressure level could be achieved.
Technical Paper

Conceptualization and Implementation of a Scalable Powertrain, Modular Energy Storage and an Alternative Cooling System on a Student Concept Vehicle

2018-04-03
2018-01-1185
The Deep Orange program immerses automotive engineering students into the world of an OEM as part of their 2-year graduate education. In support of developing the program’s seventh vehicle concept, the students studied the sponsoring brand essence, conducted market research, and made a heuristic assessment of competitor vehicles. The upfront research lead to the definition of target customers and setting vehicle level targets that were broken down into requirements to develop various vehicle sub-systems. The powertrain team was challenged to develop a scalable propulsion concept enabled by a common vehicle architecture that allowed future customers to select (at the point of purchase) among various levels of electrification best suiting their needs and personal desires. Four different configurations were identified and developed: all-electric, two plug-in hybrid electric configurations, and an internal combustion engine only.
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

2017-06-05
2017-01-1787
Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Technical Paper

Finding All Potential Run-Time Errors and Data Races in Automotive Software

2017-03-28
2017-01-0054
Safety-critical embedded software has to satisfy stringent quality requirements. All contemporary safety standards require evidence that no data races and no critical run-time errors occur, such as invalid pointer accesses, buffer overflows, or arithmetic overflows. Such errors can cause software crashes, invalidate separation mechanisms in mixed-criticality software, and are a frequent cause of errors in concurrent and multi-core applications. The static analyzer Astrée has been extended to soundly and automatically analyze concurrent software. This novel extension employs a scalable abstraction which covers all possible thread interleavings, and reports all potential run-time errors, data races, deadlocks, and lock/unlock problems. When the analyzer does not report any alarm, the program is proven free from those classes of errors. Dedicated support for ARINC 653 and OSEK/AUTOSAR enables a fully automatic OS-aware analysis.
Journal Article

Validation of Aerodynamic Simulation and Wind Tunnel Test of the New Buick Excelle GT

2017-03-28
2017-01-1512
The validation of vehicle aerodynamic simulation results to wind tunnel test results and simulation accuracy improvement attract considerable attention of many automotive manufacturers. In order to improve the simulation accuracy, a simulation model of the ground effects simulation system of the aerodynamic wind tunnel of the Shanghai Automotive Wind Tunnel Center was built. The model includes the scoop, the distributed suction, the tangential blowing, the moving belt and the wheel belts. The simulated boundary layer profile and the pressure distribution agree well with test results. The baseline model and multiple design changes of the new Buick Excelle GT are simulated. The simulation results agree very well with test results.
Technical Paper

Designing Sound for Quiet Cars

2016-06-15
2016-01-1839
The quiet nature of hybrid and electric vehicles has triggered developments in research, vehicle manufacturing and legal requirements. Currently, three countries require fitting an Approaching Vehicle Alerting System (AVAS) to every new car capable of driving without a combustion engine. Various other geographical areas and groups are in the process of specifying new legal requirements. In this paper, the design challenges in the on-going process of designing the sound for quiet cars are discussed. A proposal is issued on how to achieve the optimum combination of safety, environmental noise, subjective sound character and technical realisation in an iterative sound design process. The proposed sound consists of two layers: the first layer contains tonal components with their pitch rising along with vehicle speed in order to ensure recognisability and an indication of speed.
Technical Paper

μAFS High Resolution ADB/AFS Solution

2016-04-05
2016-01-1410
A cooperation of several research partners supported by the German Federal Ministry of Research and Education proposes a new active matrix LED light source. A multi pixel flip chip LED array is directly mounted to an active driver IC. A total of 1024 pixel can be individually addressed through a serial data bus. Several of these units are integrated in a prototype headlamp to enable advanced light distribution patterns in an evaluation vehicle.
Technical Paper

Thermal Design Evaluation of Construction Vehicles using a Simulation Based Methodology

2015-09-29
2015-01-2888
Design and evaluation of construction equipments and vehicles in the construction industry constitute a very important but expensive and time consuming part of the engineering process on account of large number of variants of prototypes and low production volumes associated with each variant. In this article, we investigate an alternative approach to the hardware testing based design process by implementing a Computational Fluid Dynamics (CFD) simulation based methodology that has the potential to reduce the cost and time of the entire design process. The simulation results were compared with test data and good agreement was observed between test data and simulation.
Technical Paper

Application and Validation of CAE Methods for Comprehensive Durability Assessment of Leaf Springs with Measurement and Testing

2015-09-29
2015-01-2756
Securing the desired strength and durability characteristics of suspension components is one of the most important topics in the development of commercial vehicles because these components undergo multiaxial variable amplitude loading. Leaf springs are essential for the suspension systems of trucks and they are considered as security relevant components in the product development phase. In order to guide the engineers in the design and testing department, a simulation method is developed as explained by Bakir et al. in a recently published SAE paper [1]. The main aim of the present study is to illustrate the validation of this simulation method for the durability of leaf springs based on the results from testing and measurements. In order to verify this CAE Method, the calculated stresses on the leaf springs are compared with the results of strain gage measurements and the fatigue failures of leaf springs are correlated with the calculated damage values.
Journal Article

Aerodynamic Optimization of Trailer Add-On Devices Fully- and Partially-Skirted Trailer Configurations

2015-09-29
2015-01-2885
As part of the United States Department of Energy's SuperTruck program, Volvo Trucks and its partners were tasked with demonstrating 50% improvement in overall freight efficiency for a tractor-trailer, relative to a best in class 2009 model year truck. This necessitated that significant gains be made in reducing aerodynamic drag of the tractor-trailer system, so trailer side-skirts and a trailer boat-tail were employed. A Lattice-Boltzmann based simulation method was used in conjunction with a Kriging Response Surface optimization process in order to efficiently describe a design space of seven independent parameters relating to boat-tail and side-skirt dimensions, and to find an optimal configuration. Part 1 concerns a fully-skirted tractor-trailer system, and consists of an initial phase of optimization, followed by a mid-project re-evaluation of constraints, and an additional period of optimization.
Technical Paper

The Lattice-Boltzmann Method: An Alternative to LES for Complex Aerodynamic and Aeroacoustic Simulations in the Aerospace Industry

2015-09-15
2015-01-2575
An overview of the theory and applications of the Lattice-Boltzmann Method (LBM) is presented in this paper. LBM has gained a reputation over the past decade as a viable alternative to traditional Reynolds-averaged Navier-Stokes (RANS) based methods for the solution of computational fluid dynamics (CFD) applications in the aerospace and automotive industries. The theoretical background of the method is presented and the key differentiators to traditional RANS methods are summarized. We then look at current and potential future applications of CFD in the aerospace industry and identify a number of areas where the limitations of RANS tools, in particular with regard to unsteady flows and the handling of complex geometries, prevent a deeper penetration of CFD into product development processes in the aerospace industry.
Journal Article

Assessment of Broadband Noise Generated by a Vehicle Sunroof at Different Flow Conditions using a Digital Wind Tunnel

2015-06-15
2015-01-2321
For the automotive industry, the quality and level of the wind noise contribution has a growing importance and therefore should be addressed as early as possible in the development process. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof broadband noise is generated by the turbulent flow developed over the roof opening. A strong shear layer and vortices impacting on the trailing edge of the sunroof are typical mechanisms related to the noise production. Sunroof designs are tested to meet broadband noise targets. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions and potentially late design changes.
X