Refine Your Search

Topic

Search Results

Technical Paper

Powering Tomorrow's Light, Medium, and Heavy-Duty Vehicles: A Comprehensive Techno-Economic Examination of Emerging Powertrain Technologies

2024-04-09
2024-01-2446
This paper presents a comprehensive analysis of emerging powertrain technologies for a wide spectrum of vehicles, ranging from light-duty passenger vehicles to medium and heavy-duty trucks. The study focuses on the anticipated evolution of these technologies over the coming decades, assessing their potential benefits and impact on sustainability. The analysis encompasses simulations across a wide range of vehicle classes, including compact, midsize, small SUVs, midsize SUVs, and pickups, as well as various truck types, such as class 4 step vans, class 6 box trucks, and class 8 regional and long-haul trucks. It evaluates key performance metrics, including fuel consumption, estimated purchase price, and total cost of ownership, for these vehicles equipped with advanced powertrain technologies such as mild hybrid, full hybrid, plug-in hybrid, battery electric, and fuel cell powertrains.
Technical Paper

Transmission Shifting Analysis and Model Validation for Medium Duty Vehicles

2023-04-11
2023-01-0196
Over the past couple of years, Argonne National Laboratory has tested, analyzed, and validated automobile models for the light duty vehicle class, including several types of powertrains including conventional, hybrid electric, plug-in hybrid electric and battery electric vehicles. Argonne’s previous works focused on the light duty vehicle models, but no work has been done on medium and heavy-duty vehicles. This study focuses on the validation of shifting control in advanced automatic transmission technologies for medium duty vehicles by using Argonne’s model-based high-fidelity, forward-looking, vehicle simulation tool, Autonomie. Different medium duty vehicles, from Argonne’s own fleet, including the Ram 2500, Ford F-250 and Ford F-350, were tested with the equipment for OBD (on-board diagnostics) signal data record. For the medium duty vehicles, a workflow process was used to import test data.
Technical Paper

Vehicle-In-The-Loop Workflow for the Evaluation of Energy-Efficient Automated Driving Controls in Real Vehicles

2022-03-29
2022-01-0420
This paper introduces a new systematic workflow for the rapid evaluation of energy-efficient automated driving controls in real vehicles in controlled laboratory conditions. This vehicle-in-the-loop (VIL) workflow, largely standardized and automated, is reusable and customizable, saves time and minimizes costly dynamometer time. In the first case study run with the VIL workflow, an automated car driven by an energy-efficient driving control previously developed at Argonne used up to 22 % less energy than a conventional control. In a VIL experiment, the real vehicle, positioned on a chassis dynamometer, has a digital twin that drives in a virtual world that replicates real-life situations, such as approaching a traffic signal or following other vehicles.
Technical Paper

Design of a Rule-Based Controller and Parameter Optimization Using a Genetic Algorithm for a Dual-Motor Heavy-Duty Battery Electric Vehicle

2022-03-29
2022-01-0413
This paper describes a configuration and controller, designed using Autonomie,1 for dual-motor battery electric vehicle (BEV) heavy-duty trucks. Based on the literature and current market research, this model was designed with two electric motors, one on the front axle and the other on the rear axle. A rule-based control algorithm was designed for the new dual-motor BEV, based on the model, and the control parameters were optimized by using a genetic algorithm (GA). The model was simulated in diverse driving cycles and gradeability tests. The results show both a good following of the desired cycle and achievement of truck gradeability performance requirements. The simulation results were compared with those of a single-motor BEV and showed reduced energy consumption with the high-efficiency operation of the two motors.
Journal Article

Forecasting Short to Mid-Length Speed Trajectories of Preceding Vehicle Using V2X Connectivity for Eco-Driving of Electric Vehicles

2021-04-06
2021-01-0431
In recent studies, optimal control has shown promise as a strategy for enhancing the energy efficiency of connected autonomous vehicles. To maximize optimization performance, it is important to accurately predict constraints, especially separation from a vehicle in front. This paper proposes a novel prediction method for forecasting the trajectory of the nearest preceding car. The proposed predictor is designed to produce short to medium-length speed trajectories using a locally weighted polynomial regression algorithm. The polynomial coefficients are trained by using two types of information: (1) vehicle-to-vehicle (V2V) messages transmitted by multiple preceding vehicles and (2) vehicle-to-infrastructure (V2I) information broadcast by roadside equipment. The predictor’s performance was tested in a multi-vehicle traffic simulation platform, RoadRunner, previously developed by Argonne National Laboratory.
Technical Paper

A Real-Time Intelligent Speed Optimization Planner Using Reinforcement Learning

2021-04-06
2021-01-0434
As connectivity and sensing technologies become more mature, automated vehicles can predict future driving situations and utilize this information to drive more energy-efficiently than human-driven vehicles. However, future information beyond the limited connectivity and sensing range is difficult to predict and utilize, limiting the energy-saving potential of energy-efficient driving. Thus, we combine a conventional speed optimization planner, developed in our previous work, and reinforcement learning to propose a real-time intelligent speed optimization planner for connected and automated vehicles. We briefly summarize the conventional speed optimization planner with limited information, based on closed-form energy-optimal solutions, and present its multiple parameters that determine reference speed trajectories.
Journal Article

Detailed Analysis of U.S. Department of Energy Engine Targets Compared to Existing Engine Technologies

2020-04-14
2020-01-0835
The U.S. Department of Energy, Vehicle Technologies Office (U.S. DOE-VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that would enable the United States to burn less petroleum on the road. System simulation is an accepted approach for evaluating the fuel economy potential of advanced (future) technology targets. U.S. DOE-VTO defines the targets for advancement in powertrain technologies (e.g., engine efficiency targets, battery energy density, lightweighting, etc.) Vehicle system simulation models based on these targets have been generated in Autonomie, reflecting the different EPA classifications of vehicles for different advanced timeframes as part of the DOE Benefits and Scenario (BaSce) Analysis. It is also important to evaluate the progress of these component technical targets compared to existing technologies available in the market.
Technical Paper

Fuel Consumption and Performance Benefits of Electrified Powertrains for Transit Buses

2018-04-03
2018-01-0321
This study presents a process to quantify the fuel saving potential of electrified powertrains for medium and heavy duty vehicles. For this study, equivalent vehicles with electrified powertrains are designed with the underlying principle of not compromising on cargo carrying capacity or performance. Several performance characteristics, that are relevant for all types of medium and heavy duty vehicles, were identified for benchmarking based on the feedback from the industry. Start-stop hybrids, parallel pre-transmission hybrids, plug-in hybrids, and battery electric vehicles are the technology choices in this study. This paper uses one vehicle as an example, explains the component sizing process followed for each powertrain, and examines each powertrain’s fuel saving potential. The process put forth in this paper can be used for evaluating vehicles that belong to all medium and heavy duty classes.
Technical Paper

Standard Driving Cycles Comparison (IEA) & Impacts on the Ownership Cost

2018-04-03
2018-01-0423
A new type of approval procedure for light-duty vehicles, the Worldwide harmonized Light vehicles Test Procedure (WLTP), developed by an initiative of the United Nations Economic Commission for Europe, will come into force by the end of 2017. The current European type-approval procedure for energy consumption and CO2 emissions of cars, the New European Driving Cycle (NEDC), includes a number of tolerances and flexibilities that no longer accurately reflect state-of-the-art technologies. Indeed, on the basis of an analysis of real-world driving data from the German website spritmonitor.de, the ICCT concluded that the differences between official laboratory and real-world fuel consumption and CO2 values were around 7% in 2001. This discrepancy has been increasing continuously since then to around 30% in 2013, with notable differences found between individual manufacturers and vehicle models.
Technical Paper

Fuel Efficient Speed Optimization for Real-World Highway Cruising

2018-04-03
2018-01-0589
This paper introduces an eco-driving highway cruising algorithm based on optimal control theory that is applied to a conventionally-powered connected and automated vehicle. Thanks to connectivity to the cloud and/or to infrastructure, speed limit and slope along the future route can be known with accuracy. This can in turn be used to compute the control variable trajectory that will minimize energy consumption without significantly impacting travel time. Automated driving is necessary to the implementation of this concept, because the chosen control variables (e.g., torque and gear) impact vehicle speed. An optimal control problem is built up where quadratic models are used for the powertrain. The optimization is solved by applying Pontryagin’s minimum principle, which reduces the problem to the minimization of a cost function with parameters called co-states.
Technical Paper

Model Validation of the Chevrolet Volt 2016

2018-04-03
2018-01-0420
Validation of a vehicle simulation model of the Chevrolet Volt 2016 was conducted. The Chevrolet Volt 2016 is equipped with the new “Voltec” extended-range propulsion system introduced into the market in 2016. The second generation Volt powertrain system operates in five modes, including two electric vehicle modes and three extended-range modes. Model development and validation were conducted using the test data performed on the chassis dynamometer set in a thermal chamber of Argonne National Laboratory’s Advanced Powertrain Research Facility. First, the components of the vehicle, such as the engine, motor, battery, wheels, and chassis, were modeled, including thermal aspects based on the test data. For example, engine efficiency changes dependent on the coolant temperature, or chassis heating or air-conditioning operations according to the ambient and cabin temperature, were applied.
Technical Paper

Long Term Impact of Vehicle Electrification on Vehicle Weight and Cost Breakdown

2017-03-28
2017-01-1174
Today’s value proposition of plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) remain expensive. While the cost of lithium batteries has significantly decreased over the past few years, more improvement is necessary for PHEV and BEV to penetrate the mass market. However, the technology and cost improvements of the primary components used in electrified vehicles such as batteries, electric machines and power electronics have far exceeded the improvements in the main components used in conventional vehicles and this trend is expected to continue for the foreseeable future. Today’s weight and cost structures of electrified vehicles differ substantially from that of conventional vehicles but that difference will shrink over time. This paper highlights how the weight and cost structures, both in absolute terms and in terms of split between glider and powertrain, converge over time.
Technical Paper

Comparing the Powertrain Energy Densities of Electric and Gasoline Vehicles)

2016-04-05
2016-01-0903
The energy density and power density comparison of conventional fuels and batteries is often mentioned as an advantage of conventional vehicles over electric vehicles. Such an analysis often shows that the batteries are at least an order of magnitude behind fuels like gasoline. However this incomplete analysis ignores the impact of powertrain efficiency and mass of the powertrain itself. When we compare the potential of battery electric vehicles (BEVs) as an alternative for conventional vehicles, it is important to include the energy in the fuel and their storage as well as the eventual conversion to mechanical energy. For instance, useful work expected out of a conventional vehicle as well as a BEV is the same (to drive 300 miles with a payload of about 300 lb). However, the test weight of a Conventional vehicle and BEV will differ on the basis of what is needed to convert their respective stored energy to mechanical energy.
Technical Paper

Model Validation of the Honda Accord Plug-In

2016-04-05
2016-01-1151
This paper presents the validation of an entire vehicle model of the Honda Accord Plug-in Hybrid Electric Vehicle (PHEV), which has a new powertrain system that can be driven in both series and parallel hybrid drive using a clutch, including thermal aspects. The Accord PHEV is a series-parallel PHEV with about 21 km of all-electric range and no multi-speed gearbox. Vehicle testing was performed at Argonne’s Advanced Powertrain Research Facility on a chassis dynamometer set in a thermal chamber. First, components (engine, battery, motors and wheels) were modeled using the test data and publicly available assumptions. This includes calibration of the thermal aspects, such as engine efficiency as a function of coolant temperature. In the second phase, the vehicle-level control strategy, especially the energy management, was analyzed in normal conditions in both charge-depleting and charge-sustaining modes.
Technical Paper

Impact of Advanced Engine and Powertrain Technologies on Engine Operation and Fuel Consumption for Future Vehicles

2015-04-14
2015-01-0978
Near-term advances in spark ignition (SI) engine technology (e.g., variable value lift [VVL], gasoline direct injection [GDI], cylinder deactivation, turbo downsizing) for passenger vehicles hold promise of delivering significant fuel savings for vehicles of the immediate future. Similarly, trends in transmissions indicate higher (8-speed, 9-speed) gear numbers, higher spans, and a focus on downspeeding to improve engine efficiency. Dual-clutch transmissions, which exhibit higher efficiency in lower gears, than the traditional automatics, and are being introduced in the light-duty vehicle segment worldwide. Another development requiring low investment and delivering immediate benefits has been the adaptation of start-stop (micro hybrids or idle engine stop technology) technology in vehicles today.
Journal Article

Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4

2014-04-01
2014-01-1818
This paper includes analysis results for the control strategy of the Peugeot 3008 Hybrid4, a diesel-electric hybrid vehicle, under different thermal conditions. The analysis was based on testing results obtained under the different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory (ANL). The objectives were to determine the principal concepts of the control strategy for the vehicle at a supervisory level, and to understand the overall system behavior based on the concepts. Control principles for complex systems are generally designed to maximize the performance, and it is a serious challenge to determine these principles without detailed information about the systems. By analyzing the test results obtained in various driving conditions with the Peugeot 3008 Hybrid4, we tried to figure out the supervisory control strategy.
Technical Paper

Impact of Transmission Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations

2014-04-01
2014-01-1082
Manufacturers have been considering various technology options to improve vehicle fuel economy. One of the most cost effective technology is related to advanced transmissions. To evaluate the benefits of transmission technologies and control to support the 2017-2025 CAFE regulations, a study was conducted to simulate many of the many types of transmissions: Automatic transmissions, Manual Transmission as well as Dual Clutch Transmissions including the most commonly used number of gears in each of the technologies (5-speeds, 6-speeds, and 8-speeds). Different vehicle classes were also analyzed in the study process: Compact, Midsize, Small SUV, Midsize SUV and Pickup. This paper will show the fuel displacement benefit of each advanced transmission across vehicle classes.
Technical Paper

Advanced Automatic Transmission Model Validation Using Dynamometer Test Data

2014-04-01
2014-01-1778
As a result of increasingly stringent regulations and higher customer expectations, auto manufacturers have been considering numerous technology options to improve vehicle fuel economy. Transmissions have been shown to be one of the most cost-effective technologies for improving fuel economy. Over the past couple of years, transmissions have significantly evolved and impacted both performance and fuel efficiency. This study validates the shifting control of advanced automatic transmission technologies in vehicle systems by using Argonne National Laboratory's model-based vehicle simulation tool, Autonomie. Different midsize vehicles, including several with automatic transmission (6-speeds, 7-speeds, and 8-speeds), were tested at Argonne's Advanced Powertrain Research Facility (APRF). For the vehicles, a novel process was used to import test data.
Journal Article

Validating Volt PHEV Model with Dynamometer Test Data Using Autonomie

2013-04-08
2013-01-1458
The first commercially available Plug-In Hybrid Electric Vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in December 2010. The Volt's powertrain architecture provides four modes of operation, including two that are unique and maximize the Volt's efficiency and performance. The electric transaxle has been specially designed to enable patented operating modes both to improve the electric driving range when operating as a battery electric vehicle and to reduce fuel consumption when extending the range by operating with an internal combustion engine (ICE). However, details on the vehicle control strategy are not widely available because the supervisory control algorithm is proprietary. Since it is not possible to analyze the control without vehicle test data obtained from a well-designed Design-of-Experiment (DoE), a highly instrumented GM Volt, including thermal sensors, was tested at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF).
Technical Paper

A Comparative Study of Hydraulic Hybrid Systems for Class 6 Trucks

2013-04-08
2013-01-1472
In order to reduce fuel consumption, companies have been looking at hybridizing vehicles. So far, two main hybridization options have been considered: electric and hydraulic hybrids. Because of light duty vehicle operating conditions and the high energy density of batteries, electric hybrids are being widely used for cars. However, companies are still evaluating both hybridization options for medium and heavy duty vehicles. Trucks generally demand very large regenerative power and frequent stop-and-go. In that situation, hydraulic systems could offer an advantage over electric drive systems because the hydraulic motor and accumulator can handle high power with small volume capacity. This study compares the fuel displacement of class 6 trucks using a hydraulic system compared to conventional and hybrid electric vehicles. The paper will describe the component technology and sizes of each powertrain as well as their overall vehicle level control strategies.
X