Refine Your Search

null

Search Results

Viewing 1 to 12 of 12
Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Journal Article

Cylinder Pressure Based Fuel Path Control for Non-Conventional Combustion Modes

2015-09-06
2015-24-2508
Model-based control strategies along with an adapted calibration process become more important in the overall vehicle development process. The main drivers for this development trend are increasing numbers of vehicle variants and more complex engine hardware, which is required to fulfill the more and more stringent emission legislation and fuel consumption norms. Upcoming fundamental changes in the homologation process with EU 6c, covering an extended range of different operational and ambient conditions, are suspected to intensify this trend. One main reason for the increased calibration effort is the use of various complex aftertreatment technologies amongst different vehicle applications, requiring numerous combustion modes. The different combustion modes range from heating strategies for active Diesel Particulate Filter (DPF) regeneration or early SCR light-off and rich combustion modes to purge the NOx storage catalyst (NSC) up to partially premixed combustion modes.
Technical Paper

Internal and External Measures for Catalyst Light-Off Support

2015-09-06
2015-24-2501
Within a project of the Research Association for Combustion Engines e.V., different measures for rising the temperature of exhaust gas aftertreatment components of both a passenger car and an industrial/commercial vehicle engine were investigated on a test bench as well as in simulation. With the passenger car diesel engine and different catalyst configurations, the potential of internal and external heating measures was evaluated. The configuration consisting of a NOx storage catalyst (NSC) and a diesel particulate filter (DPF) illustrates the potential of an electrically heated NSC. The exhaust aftertreatment system consisting of a diesel oxidation catalyst (DOC) and a DPF shows in simulation how variable valve timing in combination with electric heated DOC can be used to increase the exhaust gas temperature and thus fulfill the EU6 emission limits.
Journal Article

The Oxidation Potential Number: An Index to Evaluate Inherent Soot Reduction in D.I. Diesel Spray Plumes

2015-09-01
2015-01-1934
A new index to evaluate the inherent soot reduction in a diesel-like spray plume is proposed in this study. The index is named “Oxidation Potential Number” and was derived with the help of a computational fluid dynamics (CFD) software. C8 - C16 n-alkanes, 1-alcohols and di-n-ethers were studied with the help of this index over four part load engine operating conditions, representative of a C-class diesel vehicle. The CFD modelling results have shown that C8 molecules feature a higher potentiality to reduce the soot. Thus, C8 molecules were tested in a single cylinder diesel engine over the same operating conditions. In conclusion, the proposed index is compared with the soot engine out emission.
Journal Article

An Experimental Investigation of Dual-Fuel Combustion in a Light Duty Diesel Engine by In-Cylinder Blending of Ethanol and Diesel

2015-09-01
2015-01-1801
This study investigated dual-fuel operation with a light duty Diesel engine over a wide engine load range. Ethanol was hereby injected into the intake duct, while Diesel was injected directly into the cylinder. At low loads, high ethanol shares are critical in terms of combustion stability and emissions of unburnt hydrocarbons. As the load increases, the rates of heat release become problematic with regard to noise and mechanical stress. At higher loads, an advanced injection of Diesel was found to be beneficial in terms of combustion noise and emissions. For all tests, engine-out NOx emissions were kept within the EU-6.1 limit.
Journal Article

On the Potential of Oxygenated Fuels as an Additional Degree of Freedom in the Mixture Formation in Direct Injection Diesel Engines

2015-04-14
2015-01-0890
The current and future restrictions on pollutant emissions from internal combustion engines require a holistic investigation of the abilities of alternative fuels to optimize the combustion process and ensure cleaner combustion. In this regard, the Tailor-made Fuels from Biomass (TMFB) Cluster at Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University aims at designing production processes for biofuels as well as fuels optimal for use in internal combustion engines. The TMFB Cluster's scientific approach considers the molecular structure of the fuels as an additional degree of freedom for the optimization of both the production pathways and the combustion process of such novel biofuels. Thus, the model-based specification of target parameters is of the utmost importance to improve engine combustion performance and to send feedback information to the biofuel production process.
Technical Paper

Modeling of Transport and Mixing Phenomena in Turbulent Flows in Closed Domains

2015-04-14
2015-01-0399
In this work, a transport and mixing model that calculates mixing in thermodynamic phase space was derived and validated. The mixing in thermodynamic multizone space is consistent to the one in the spatially resolved physical space. The model is developed using a turbulent channel flow as simplified domain. This physical domain of a direct numerical simulation (DNS) is divided into zones based on the quantitative value of transported scalars. Fluxes between the zones are introduced to describe mixing from the transport equation of the probability density function based on the mixing process in physical space. The mixing process of further scalars can then be carried out with these fluxes instead of solving additional transport equations. The relationship between the exchange flux in phase space and the concept of scalar dissipation are shown and validated by comparison to DNS results.
Journal Article

Utilization of HVO Fuel Properties in a High Efficiency Combustion System: Part 2: Relationship of Soot Characteristics with its Oxidation Behavior in DPF

2014-10-13
2014-01-2846
The present work is a continuation of the earlier published results by authors on the investigation of Hydrogenated Vegetable Oil (HVO) on a High Efficiency Diesel Combustion System (SAE Int. J. Fuels Lubr. Paper No. 2013-01-1677 and JSAE Paper No. 283-20145128). In order to further validate and interpret the previously published results of soot microstructure and its consequences on oxidation behavior, the test program was extended to analyze the impact of soot composition, optical properties, and physical properties such as size, concentration etc. on the oxidation behavior. The experiments were performed with pure HVO as well as with petroleum based diesel and today's biofuel (i.e. FAME) as baseline fuels. The soot samples for the different analyses were collected under constant engine operating conditions at indicated raw NOx emissions of Euro 6 level using closed loop combustion control methodology.
Technical Paper

Characterisation of Fuel Ignition under Partly Homogeneous Diesel Combustion

2014-04-01
2014-01-1280
Legislative restrictions on the currently limited exhaust gas components and the future CO2 emissions limits have led to intensive research in the field of alternative fuels and innovative combustion approaches. Increased homogeneity of air-fuel mixture through advanced injection is one combustion approach, which potentially reduces engine-out nitrogen oxide and particulate emissions, with good fuel consumption in certain load ranges. Ignition characteristics under homogenous combustion conditions differ from those under heterogeneous conditions. Among other reasons, this is due to the increased role of low temperature chemistry with increasing homogeneity. The ignition behaviour of diesel fuels is characterised by the Cetane number (CN), which is, however, determined at significant higher temperatures than those prevalent during ignition under homogenous combustion. As a result, its relevance as a fuel characteristic number requires evaluation.
Journal Article

Crude Tall Oil-Based Renewable Diesel as a Blending Component in Passenger Car Diesel Engines

2013-10-14
2013-01-2685
The residue and waste streams of existing industry offer feasible and sustainable raw materials for biofuel production. All kind of biomass contains carbon and hydrogen which can be turned into liquid form with suitable processes. Using hydrotreatment or Biomass-to-Liquid technologies (BTL) the liquid oil can be further converted into transportation biofuels. Hydrotreatment technology can be used to convert bio-oils and fats in to high quality diesel fuels that have superior fuel properties (e.g. low aromatic content and high cetane number) compared to regular diesel fuel and first generation ester-type diesel fuel. UPM has developed a new innovative technology based on hydrotreatment that can be used to convert Crude Tall Oil (CTO) into high quality renewable diesel fuel. This study concentrated on determining the functionality and possible effects of CTO based renewable diesel as a blending component on engine emissions and engine performance.
Journal Article

Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission

2013-04-08
2013-01-0267
Demand for transport energy is growing but this growth is skewed heavily toward commercial transport, such as, heavy road, aviation, marine and rail which uses heavier fuels like diesel and kerosene. This is likely to lead to an abundance and easy availability of lighter fractions like naphtha, which is the product of the initial distillation of crude oil. Naphtha will also require lower energy to produce and hence will have a lower CO₂ impact compared to diesel or gasoline. It would be desirable to develop engine combustion systems that could run on naphtha. Many recent studies have shown that running compression ignition engines on very low Cetane fuels, which are very similar to naphtha in their auto-ignition behavior, offers the prospect of developing very efficient, clean, simple and cheap engine combustion systems. Significant development work would be required before such systems could power practical vehicles.
Journal Article

Impact of Biomass-Derived Fuels on Soot Oxidation and DPF Regeneration Behavior

2013-04-08
2013-01-1551
To comply with the new regulations on particulate matter emissions, the manufacturers of light-duty as well as heavy-duty vehicles more commonly use diesel particulate filters (DPF). The regeneration of DPF depends to a significant extent on the properties of the soot stored. Within the Cluster of Excellence "Tailor-Made Fuels from Biomass (TMFB)" at RWTH Aachen University, the Institute for Combustion Engines carried out a detailed investigation program to explore the potential of future biofuel candidates for optimized combustion systems. The experiments for particulate measurements and analysis were conducted on a EURO 6-compliant High Efficiency Diesel Combustion System (HECS) with petroleum-based diesel fuel as reference and a today's commercial biofuel (i.e., FAME) as well as a potential future biomass-derived fuel candidate (i.e., 2-MTHF/DBE). Thermo gravimetric analyzer (TGA) was used in this study to evaluate the oxidative reactivity of the soot.
X