Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Assessment of Condensation Particle Counter-Based Portable Solid Particle Number System for Applications with High Water Content in Exhaust

2024-04-22
2024-01-5048
The Particle Number–Portable Emission Measurement System (PN-PEMS) came into force with Euro VI Phase E regulations starting January 1, 2022. However, positive ignition (PI) engines must comply from January 1, 2024. The delay was due to the unavailability of the PN-PEMS system that could withstand high concentrations of water typically present in the tailpipe (TP) of CNG vehicles, which was detrimental to the PN-PEMS systems. Thus, this study was designed to evaluate the condensation particle counter (CPC)-based PN-PEMS measurement capabilities that was upgraded to endure high concentration of water. The PN-PEMS measurement of solid particle number (SPN23) greater than 23 nm was compared against the laboratory-grade PN systems in four phases. Each phase differs based upon the PN-PEMS and PN system location and measurements were made from three different CNG engines. In the first phase, systems measured the diluted exhaust through constant volume sampler (CVS) tunnel.
Technical Paper

Application of Machine Learning to Engine Air System Failure Prediction

2024-04-09
2024-01-2007
With the capability of avoiding failure in advance, failure prediction model is important not only to end users, but also to the service engineers in vehicle industry. This paper proposes an approach based on anomaly detection algorithms and telematic data to predict the failure of the engine air system with Turbo charger. Firstly, the relationship between air system and all obtained features are analyzed by both physical mechanism and data-wise. Then, the features including altitude, air temperature, engine output power, and charger pressure are selected as the input of the model, with the sampling interval of 1 minute. Based on the selected features, the healthy state for each vehicle is defined by the model as benchmark. Finally, the ‘Medium surface’ is determined for specific vehicle, which is a hyperplane with the medium points of the healthy state located at, to detect the minor weakness symptom (sub-health state).
Technical Paper

Component Sizing Optimization Based on Technological Assumptions for Medium-Duty Electric Vehicles

2024-04-09
2024-01-2450
In response to the stipulations of the Energy Policy and Conservation Act and the global momentum toward carbon mitigation, there has been a pronounced tightening of fuel economy standards for manufacturers. This stricter regulation is coupled with an accelerated transition to electric vehicles, catalyzed by advances in electrification technology and a decline in battery cost. Improvements in the fuel economy of medium- and heavy-duty vehicles through electrification are particularly noteworthy. Estimating the magnitude of fuel economy improvements that result from technological advances in these vehicles is key to effective policymaking. In this research, we generated vehicle models based on assumptions regarding advanced transportation component technologies and powertrains to estimate potential vehicle-level fuel savings. We also developed a systematic approach to evaluating a vehicle’s fuel economy by calibrating the size of the components to satisfy performance requirements.
Technical Paper

Impact of Advanced Technologies on Energy Consumption of Advanced Electrified Medium-Duty Vehicles

2024-04-09
2024-01-2453
The National Highway Traffic Safety Administration (NHTSA) has been leading U.S. efforts related to the rulemaking process for Corporate Average Fuel Economy (CAFE) standards. Argonne National Laboratory, a U.S. Department of Energy (DOE) national laboratory, has developed a full-vehicle simulation tool called Autonomie that has become one of the industry standard tools for analyzing vehicle performance, energy consumption, and technology effectiveness. Through an Interagency Agreement, the DOE Argonne Site Office and Argonne National Laboratory have been tasked with conducting full vehicle simulation to support NHTSA CAFE rulemaking. This paper presents an innovative approach focused on large-scale simulation processes spanning standard regulatory driving cycles, diverse vehicle classes, and various timeframes. A key element of this approach is Autonomie’s capacity to integrate advanced engine technologies tailored to specific vehicle classes and powertrains.
Technical Paper

Powering Tomorrow's Light, Medium, and Heavy-Duty Vehicles: A Comprehensive Techno-Economic Examination of Emerging Powertrain Technologies

2024-04-09
2024-01-2446
This paper presents a comprehensive analysis of emerging powertrain technologies for a wide spectrum of vehicles, ranging from light-duty passenger vehicles to medium and heavy-duty trucks. The study focuses on the anticipated evolution of these technologies over the coming decades, assessing their potential benefits and impact on sustainability. The analysis encompasses simulations across a wide range of vehicle classes, including compact, midsize, small SUVs, midsize SUVs, and pickups, as well as various truck types, such as class 4 step vans, class 6 box trucks, and class 8 regional and long-haul trucks. It evaluates key performance metrics, including fuel consumption, estimated purchase price, and total cost of ownership, for these vehicles equipped with advanced powertrain technologies such as mild hybrid, full hybrid, plug-in hybrid, battery electric, and fuel cell powertrains.
Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Modeling Pre-Chamber Assisted Efficient Combustion in an Argon Power Cycle Engine

2024-04-09
2024-01-2690
The Argon Power Cycle (APC) is a novel zero-emission closed-loop argon recirculating engine cycle which has been developed by Noble Thermodynamics Systems, Inc. It provides a significant gain in indicated thermal efficiency of the reciprocating engine by breathing oxygen and argon rather than air. The use of argon, a monatomic gas, greatly increases the specific heat ratio of the working fluid, resulting in a significantly higher ideal Otto cycle efficiency. This technology delivers a substantial improvement in reciprocating engine performance, maximizing the energy conversion of fuel into useful work. Combined Heat and Power (CHP) operating under the APC represents a promising solution to realize a net-zero-carbon future, providing the thermal energy that hard-to-electrify manufacturing processes need while at the same time delivering clean, dispatchable, and efficient power.
Technical Paper

Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine

2024-04-09
2024-01-2694
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms.
Technical Paper

Numerical Simulation of Class 8 Tractor Trailer Geometries and Comparison with Wind Tunnel Data

2024-04-09
2024-01-2533
This article analyzes the aerodynamic performance of Class 8 tractor-trailer geometries made available by the Environmental Protection Agency (EPA) using CFD simulation. Large Eddy Simulations (LES) were carried out with the CFD package, Simerics-MP+. A Sleeper tractor and a 53-foot box trailer configuration was considered. The configuration featured a detailed underbody, an open-grille under-hood engine compartment, mirrors, and the radiator and condenser. Multiple tractor-trailer variants were studied by adding aerodynamic surfaces to the baseline geometries. These include tank fairings and side extenders for the cabins, two types of trailer skirts, and a trailer tail. The effect of these devices towards reducing the overall vehicle drag was investigated. Mesh generation was carried out directly on the given geometry, without any surface modifications, using Simerics’ Binary-Tree unstructured mesher.
Technical Paper

Comprehensive Cradle to Grave Life Cycle Analysis of On-Road Vehicles in the United States Based on GREET

2024-04-09
2024-01-2830
To properly compare and contrast the environmental performance of one vehicle technology against another, it is necessary to consider their production, operation, and end-of-life fates. Since 1995, Argonne’s GREET® life cycle analysis model (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) has been annually updated to model and refine the latest developments in fuels and materials production, as well as vehicle operational and composition characteristics. Updated cradle-to-grave life cycle analysis results from the model’s latest release are described for a wide variety of fuel and powertrain options for U.S. light-duty and medium/heavy-duty vehicles. Light-duty vehicles include a passenger car, sports utility vehicle (SUV), and pick-up truck, while medium/heavy-duty vehicles include a Class 6 pickup-and-delivery truck, Class 8 day-cab (regional) truck, and Class 8 sleeper-cab (long-haul) truck.
Technical Paper

3-D Multiphase Flow Simulation of Coolant Filling and Deaeration Processes in an Engine Coolant System

2024-01-16
2024-26-0310
The thermal performance of an engine coolant system is efficient when the engine head temperature is maintained within its optimum working range. For this, it is desired that air should not be entrapped in the coolant system which can lead to localized hot spots at critical locations. However, it is difficult to eliminate the trapped air pockets completely. So, the target is to minimize the entrapped air as much as possible during the coolant filling and deaeration processes, especially in major components such as the radiator, engine head, pump etc. The filling processes and duration are typically optimized in an engine test stand along with design changes for augmenting the coolant filling efficiency. However, it is expensive and time consuming to identify air entrapped locations in tests, decide on the filling strategy and make the design changes in the piping accordingly.
Technical Paper

Residual Gas Fraction Measurement and Estimation of the CFR Octane Rating Engine Operating Under HCCI Conditions

2023-09-29
2023-32-0010
The autoignition chemistry of fuels depends on the pressure, temperature, and time history that the fuel-air mixture experiences during the compression stroke. While piezoelectric pressure transducers offer excellent means of pressure measurement, temperature measurements are not commonly available and must be estimated. Even if the pressure and temperature at the intake and exhaust ports are measured, the residual gas fraction (RGF) within the combustion chamber requires estimation and greatly impacts the temperature of the fresh charge at intake valve closing. This work replaced the standard D1 Detonation Pickup of a CFR engine with a rapid sampling valve to allow for in-cylinder gas sampling at defined crank-angle times during the compression stroke. The extracted cylinder contents were captured in an emissions sample bag and its composition was subsequently analyzed in an AVL i60 emissions bench.
Technical Paper

An Approach for Incorporating Learning into System Design: System Level Assessment Methodology

2023-09-05
2023-01-1517
Shafaat and Kenley in 2015 identified the opportunity to improve System Engineering Standards by incorporating the design principle of learning. The System Level Assessment (SLA) Methodology is an approach that fulfills this need by efficiently capturing the learnings of a team of subject matter experts in the early stages of product system design. By gathering expertise, design considerations are identified that when used with market and business requirements improve the overall quality of the product system. To evaluate the effectiveness of this approach, the methodology has been successfully applied over 400 times within each realm of the New Product Introduction process, including most recently to a Technology Development program (in the earliest stages of the design process) to assess the viability of various electrification technologies under consideration by an automotive Tier 1 supplier.
Technical Paper

HIL Demonstration of Energy Management Strategy for Real World Extreme Fast Charging Stations with Local Battery Energy Storage Systems

2023-04-11
2023-01-0701
Extreme Fast Charging (XFC) infrastructure is crucial for an increase in electric vehicle (EV) adoption. However, an unmanaged implementation may lead to negative grid impacts and huge power costs. This paper presents an optimal energy management strategy to utilize grid-connected Energy Storage Systems (ESS) integrated with XFC stations to mitigate these grid impacts and peak demand charges. To achieve this goal, an algorithm that controls the charge and discharge of ESS based on an optimal power threshold is developed. The optimal power threshold is determined to carry out maximum peak shaving for given battery size and SOC constraints.
Technical Paper

Road Snow Coverage Estimation Using Camera and Weather Infrastructure Sensor Inputs

2023-04-11
2023-01-0057
Modern vehicles use automated driving assistance systems (ADAS) products to automate certain aspects of driving, which improves operational safety. In the U.S. in 2020, 38,824 fatalities occurred due to automotive accidents, and typically about 25% of these are associated with inclement weather. ADAS features have been shown to reduce potential collisions by up to 21%, thus reducing overall accidents. But ADAS typically utilize camera sensors that rely on lane visibility and the absence of obstructions in order to function, rendering them ineffective in inclement weather. To address this research gap, we propose a new technique to estimate snow coverage so that existing and new ADAS features can be used during inclement weather. In this study, we use a single camera sensor and historical weather data to estimate snow coverage on the road. Camera data was collected over 6 miles of arterial roadways in Kalamazoo, MI.
Technical Paper

Automated Vehicle Perception Sensor Evaluation in Real-World Weather Conditions

2023-04-11
2023-01-0056
Perception in adverse weather conditions is one of the most prominent challenges for automated driving features. The sensors used for mid-to-long range perception most impacted by weather (i.e., camera and LiDAR) are susceptible to data degradation, causing potential system failures. This research series aims to better understand sensor data degradation characteristics in real-world, dynamic environmental conditions, focusing on adverse weather. To achieve this, a dataset containing LiDAR (Velodyne VLP-16) and camera (Mako G-507) data was gathered under static scenarios using a single vehicle target to quantify the sensor detection performance. The relative position between the sensors and the target vehicle varied longitudinally and laterally. The longitudinal position was varied from 10m to 175m at 25m increments and the lateral position was adjusted by moving the sensor set angle between 0 degrees (left position), 4.5 degrees (center position), and 9 degrees (right position).
Journal Article

Empirical Equations of Changes in Aerodynamic Drag Based on Direct On-Track Road Load Measurements for Multi-Vehicle Platoons

2023-04-11
2023-01-0830
Considerable effort is currently being focused on emerging vehicle automation technologies. Engineers are making great strides in improving safety and reliability, but they are also exploring how these new technologies can enhance energy efficiency. This study focuses on the changes in aerodynamic drag associated with coordinated driving scenarios, also known as “platooning.” To draw sound conclusions in simulation or experimental studies where vehicle speed and gaps are controlled and coordinated, it is necessary to have a robust quantitative understanding of the road load changes associated with each vehicle in the platoon. Many variables affect the drag of each vehicle, such as each gap length, vehicle type/size, vehicle order and number of vehicles in the platoon. The effect is generally understood, but there are limited supporting data in the literature from actual test vehicles driving in formation.
Technical Paper

Experimental and Modeling Study on the Thermal Aging Impact on the Performance of the Natural Gas Three-Way Catalyst

2023-04-11
2023-01-0375
The prediction accuracy of a three-way catalyst (TWC) model is highly associated with the ability of the model to incorporate the reaction kinetics of the emission process as a lambda function. In this study, we investigated the O2 and H2 concentration profiles of TWC reactions and used them as critical inputs for the development of a global TWC model. We presented the experimental data and global kinetic model showing the impact of thermal degradation on the performance of the TWC. The performance metrics investigated in this study included CH4, NOx, and CO conversions under lean, rich, and dithering light-off conditions to determine the kinetics of oxidation reactions and reduction/reforming/water-gas shift reactions as a function of thermal aging. The O2 and H2 concentrations were measured using mass spectrometry to track the change in the oxidation state of the catalyst and to determine the mechanism of the reactions under these light-off conditions.
Journal Article

On-Track Demonstration of Automated Eco-Driving Control for an Electric Vehicle

2023-04-11
2023-01-0221
This paper presents the energy savings of an automated driving control applied to an electric vehicle based on the on-track testing results. The control is a universal speed planner that analytically solves the eco-driving optimal control problem, within a receding horizon framework and coupled with trajectory tracking lower-level controls. The automated eco-driving control can take advantage of signal phase and timing (SPaT) provided by approaching traffic lights via vehicle-to-infrastructure (V2I) communications. At each time step, the controller calculates the accelerator and brake pedal position (APP/BPP) based on the current state of the vehicle and the current and future information about the surrounding environment (e.g., speed limits, traffic light phase).
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
X