Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Evaluation of DAMAGE Algorithm in Frontal Crashes

2024-04-17
2023-22-0006
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world.
Technical Paper

Split Ring Resonator-based Metamaterial with Total Bandgap for Reducing NVH in Electric Vehicles

2024-04-09
2024-01-2348
We propose a novel Split Ring Resonator (SRR) metamaterial capable of achieving a total (or complete) bandgap in the material’s band structure, thereby reflecting airborne and structure-borne noise in a targeted frequency range. Electric Vehicles (EVs) experience tonal excitation arising from switching frequencies associated with motors and inverters, which can significantly affect occupant perception of vehicle quality. Recently proposed metamaterial designs reflect airborne noise and structure-borne transverse waves over a band of frequencies, but do not address structure-borne longitudinal waves in the same band. To achieve isolation of acoustic, transverse, and longitudinal elastic waves associated with tonal frequencies, we propose a metamaterial super cell with transverse and longitudinal resonant frequencies falling in a total bandgap. We calculate the resonant frequencies and corresponding mode shapes using finite element (FE) modal analysis.
Technical Paper

Robust Trajectory Tracking Control for Intelligent Connected Vehicle Swarm System

2022-12-22
2022-01-7083
An intelligent connected vehicle (ICV) swarm system that includes N vehicles is considered. Based on the special properties of potential functions, a kinematic model describing the swarm performances is proposed, which allows all vehicles to enclose the tracking target and show both tracking and formation characteristics. Treating the performances as the desired constraints, the analytical form of constraint forces can be obtained inspired by the Udwadia-Kalaba approaches. A special approach of uncertainty decomposition to deal with uncertain interferences is proposed, and a switching-type robust control method is addressed for each vehicle agent in the swarm system. The features and validity of the addressed control are demonstrated in the numerical simulations.
Technical Paper

A Comparative Study of Recurrent Neural Network Architectures for Battery Voltage Prediction

2021-09-21
2021-01-1252
Electrification is the well-accepted solution to address carbon emissions and modernize vehicle controls. Batteries play a critical in the journey of electrification and modernization with battery voltage prediction as the foundation for safe and efficient operation. Due to its strong dependency on prior information, battery voltage was estimated with recurrent neural network methods in the recent literatures exploring a variety of deep learning techniques to estimate battery behaviors. In these studies, standard recurrent neural networks, gated recurrent units, and long-short term memory are popular neural network architectures under review. However, in most cases, each neural network architecture is individually assessed and therefore the knowledge about comparative study among three neural network architecture is limited. In addition, many literatures only studied either the dynamic voltage response or the voltage relaxation.
Journal Article

Accelerating the Generation of Static Coupling Injection Maps Using a Data-Driven Emulator

2021-04-06
2021-01-0550
Accurate modeling of the internal flow and spray characteristics in fuel injectors is a critical aspect of direct injection engine design. However, such high-fidelity computational fluid dynamics (CFD) models are often computationally expensive due to the requirement of resolving fine temporal and spatial scales. This paper addresses the computational bottleneck issue by proposing a machine learning-based emulator framework, which learns efficient surrogate models for spatiotemporal flow distributions relevant for static coupling injection maps, namely total void fraction, velocity, and mass, within a design space of interest. Different design points involving variations of needle lift, fuel viscosity, and level of non-condensable gas in the fuel were explored in this study. An interpretable Bayesian learning strategy was employed to understand the effect of the design parameters on the void fraction fields at the exit of the injector orifice.
Technical Paper

Lookie Here! Designing Directional User Indicators across Displays in Conditional Driving Automation

2020-04-14
2020-01-1201
With the advent of autonomous vehicles, the human driver’s attention will slowly be relinquished from the driving task. It will allow drivers to participate in more non-driving related activities, such as engaging with information and entertainment systems. However, the automated driving system would need to notify the driver of upcoming points-of-interest on the road when the driver’s attention is focused on their screen rather than on the road or driving display. In this paper, we investigated whether providing directional alerts for an upcoming point-of-interest (POI) in or around the user’s active screen can augment their ability in relocating their visual attention to the POI on the road when traveling in a vehicle with Conditional Driving Automation. A user study (N = 15) was conducted to compare solutions for alerts that presented themselves in the participants’ central and peripheral field of view.
Technical Paper

Application of Extended Messinger Models to Complex Geometries

2020-03-10
2020-01-0022
Since, ice accretion can significantly degrade the performance and the stability of an airborne vehicle, it is imperative to be able to model it accurately. While ice accretion studies have been performed on airplane wings and helicopter blades in abundance, there are few that attempt to model the process on more complex geometries such as fuselages. This paper proposes a methodology that extends an existing in-house Extended Messinger solver to complex geometries by introducing the capability to work with unstructured grids and carry out spatial surface streamwise marching. For the work presented here commercial solvers such as STAR-CCM+ and ANSYS Fluent are used for the flow field and droplet dispersed phase computations. The ice accretion is carried out using an in-house icing solver called GT-ICE. The predictions by GT-ICE are compared to available experimental data, or to predictions by other solvers such as LEWICE and STAR-CCM+.
Journal Article

Optimal Sizing and Control of Battery Energy Storage Systems for Hybrid Turboelectric Aircraft

2020-03-10
2020-01-0050
Hybrid-electric gas turbine generators are considered a promising technology for more efficient and sustainable air transportation. The Ohio State University is leading the NASA University Leadership Initiative (ULI) Electric Propulsion: Challenges and Opportunities, focused on the design and demonstration of advanced components and systems to enable high-efficiency hybrid turboelectric powertrains in regional aircraft to be deployed in 2030. Within this large effort, the team is optimizing the design of the battery energy storage system (ESS) and, concurrently, developing a supervisory energy management strategy for the hybrid system to reduce fuel burn while mitigating the impact on the ESS life. In this paper, an energy-based model was developed to predict the performance of a battery-hybrid turboelectric distributed-propulsion (BHTeDP) regional jet.
Journal Article

Performance of Isolated UAV Rotors at Low Reynolds Number

2020-03-10
2020-01-0046
Vertical takeoff and landing vehicle platforms with many small rotors are gaining importance for small UAVs as well as distributed electric propulsion for larger vehicles. To predict vehicle performance, it must be possible to gauge interaction effects. These rotors operate in the less-known regime of low Reynolds number, with different blade geometry. As a first step, two identical commercial UAV rotors from a flight test program are studied in isolation, experimentally and computationally. Load measurements were performed in Georgia Tech’s 2.13 m × 2.74 m wind tunnel. Simulations were done using the RotCFD solver which uses a Navier-Stokes wake computation along with rotor-disc loads calculation using low-Reynolds number blade section data. It is found that in hover, small rotors available in the market vary noticeably in performance at low rotor speeds, the data converging at higher RPM and Reynolds number.
Technical Paper

Limitations of Sector Mesh Geometry and Initial Conditions to Model Flow and Mixture Formation in Direct-Injection Diesel Engines

2019-04-02
2019-01-0204
Sector mesh modeling is the dominant computational approach for combustion system design optimization. The aim of this work is to quantify the errors descending from the sector mesh approach through three geometric modeling approaches to an optical diesel engine. A full engine geometry mesh is created, including valves and intake and exhaust ports and runners, and a full-cycle flow simulation is performed until fired TDC. Next, an axisymmetric sector cylinder mesh is initialized with homogeneous bulk in-cylinder initial conditions initialized from the full-cycle simulation. Finally, a 360-degree azimuthal mesh of the cylinder is initialized with flow and thermodynamics fields at IVC mapped from the full engine geometry using a conservative interpolation approach. A study of the in-cylinder flow features until TDC showed that the geometric features on the cylinder head (valve tilt and protrusion into the combustion chamber, valve recesses) have a large impact on flow complexity.
Technical Paper

Composite Lightweight Automotive Suspension System (CLASS)

2019-04-02
2019-01-1122
The Composite Lightweight Automotive Suspension System is a composite rear suspension knuckle/tieblade consisting of UD prepreg (epoxy resin), SMC (vinylester resin) carbon fibre and a steel insert to reduce the weight of the component by 35% and reduce Co2. The compression moulding manufacturing process and CAE optimisation are unique and ground-breaking for this product and are designed to allow high volume manufacture of approx. 30,000 vehicles per year. The manufacturing techniques employed allow for multi-material construction within a five minute cycle time to make the process viable for volume manufacture. The complexities of the design lie in the areas of manufacturing, CAE prediction and highly specialised design methods. It is a well-known fact that the performance of a composite part is primarily determined by the way it is manufactured.
Journal Article

A Resonant Capacitive Coupling WPT-Based Method to Power and Monitor Seat Belt Buckle Switch Status in Removable and Interchangeable Seats

2019-04-02
2019-01-0465
In this study, we present an intelligent and wireless subsystem for powering and communicating with three sets of seat belt buckle sensors that are each installed on removable and interchangeable automobile seating. As automobile intelligence systems advance, a logical step is for the driver’s dashboard to display seat belt buckle indicators for rear seating in addition to the front seating. The problem encountered is that removable and interchangeable automobile seating outfitted with wired power and data links are inherently less reliable than rigidly fixed seating, as there is a risk of damage to the detachable power and data connectors throughout end-user seating removal/re-installation cycles.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Technical Paper

Scale Similarity Analysis of Internal Combustion Engine Flows—Particle Image Velocimetry and Large-Eddy Simulations

2018-04-03
2018-01-0172
This presentation is an assessment of the turbulence-stress scale-similarity in an IC engine, which is used for modeling subgrid dissipation in LES. Residual stresses and Leonard stresses were computed after applying progressively smaller spatial filters to measured and simulated velocity distributions. The velocity was measured in the TCC-II engine using planar and stereo PIV taken in three different planes and with three different spatial resolutions, thus yielding two and three velocity components, respectively. Comparisons are made between the stresses computed from the measured velocity and stress computed from the LES resolved-scale velocity from an LES simulation. The results present the degree of similarity between the residual stresses and the Leonard stresses at adjacent scales. The specified filters are systematically reduced in size to the resolution limits of the measurements and simulation.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Technical Paper

Aerodynamic Loads on Arbitrary Configurations: Measurements, Computations and Geometric Modeling

2017-09-19
2017-01-2162
This paper brings together three special aspects of bluff-body aeromechanics. Experiments using our Continuous Rotation method have developed a knowledge base on the 6-degree-of-freedom aerodynamic loads on over 50 different configurations including parametric variations of canonical shapes, and several practical shapes of interest. Models are mounted on a rod attached to a stepper motor placed on a 6-DOF load cell in a low speed wind tunnel. The aerodynamic loads are ensemble-averaged as phase-resolved azimuthal variations. The load component variations are obtained as discrete Fourier series for each load component versus azimuth about each of 3 primary axes. This capability has enabled aeromechanical simulation of the dynamics of roadable vehicles slung below rotorcraft. In this paper, we explore the genesis of the loads on a CONEX model, as well as models of a short and long container, using the “ROTCFD” family of unstructured Navier-Stokes solvers.
Journal Article

A Spline-Based Modeling Algorithm for Application to Aerodynamic Shape Optimization Based on CFD Analysis

2017-03-28
2017-01-1510
In early phases of conceptual design stages for developing a new car in the modern automobile industry, the lack of systematic methodology to efficiently converge to an agreement between the aesthetics and aerodynamic performance tremendously increases budget and time. During these procedures, one of the most important tasks is to create geometric information which is versatilely morphable upon the demands of both of stylists and engineers. In this perspective, this paper proposes a Spline-based Modeling Algorithm (SMA) to implement into performing aerodynamic design optimization research based on CFD analysis. Once a 3-perspective schematic of a car is given, SMA regresses the backbone boundary lines by using optimum polynomial interpolation methods with the best goodness of fit, eventually reconstructing the 3D shape by linearly interpolating from the extracted boundaries minimizing loss of important geometric features.
Technical Paper

Exploration of Turbulent Atomization Mechanisms for Diesel Spray Simulations

2017-03-28
2017-01-0829
The atomization and initial spray formation processes in direct injection engines are not well understood due to the experimental and computational challenges associated with resolving these processes. Although different physical mechanisms, such as aerodynamic-induced instabilities and nozzle-generated turbulence and cavitation, have been proposed in the literature to describe these processes, direct validation of the theoretical basis of these models under engine-relevant conditions has not been possible to date. Recent developments in droplet sizing measurement techniques offer a new opportunity to evaluate droplet size distributions formed in the central and peripheral regions of the spray. There is therefore a need to understand how these measurements might be utilized to validate unobservable physics in the near nozzle-region.
Technical Paper

The Role of Turbulent-Chemistry Interaction in Simulating End-of-Injection Combustion Transients in Diesel Sprays

2017-03-28
2017-01-0838
This study investigates the role of turbulent-chemistry interaction in simulations of diesel spray combustion phenomena after end-of-injection (EOI), using the commercially-available CFD code CONVERGE. Recent experimental and computational studies have shown that the spray flame dynamics and mixture formation after EOI are governed by turbulent entrainment, coupled with rapid evolution of the thermo-chemical state of the mixture field. A few studies have shown that after EOI, mixtures between the injector nozzle and the lifted diffusion flame can ignite and appear to propagate back towards the injector nozzle via an auto-ignition reaction sequence; referred to as “combustion recession”.
Technical Paper

Coaxial Rotor Flow Phenomena in Forward Flight

2016-09-20
2016-01-2009
Coaxial rotors are finding use in advanced rotorcraft concepts. Combined with lift offset rotor technology, they offer a solution to the problems of dynamic stall and reverse flow that often limit single rotor forward flight speeds. In addition, coaxial rotorcraft systems do not need a tail rotor, a major boon during operation in confined areas. However, the operation of two counter-rotating rotors in close proximity generates many possible aerodynamic interactions between rotor blades, blades and vortices, and between vortices. With two rotors, the parameter design space is very large, and requires efficient computations as well as basic experiments to explore aerodynamics of a coaxial rotor and the effects on performance, loads, and acoustics.
X