Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Modelling and Analysis of a Cooperative Adaptive Cruise Control (CACC) Algorithm for Fuel Economy

2024-04-09
2024-01-2564
Connectivity in ground vehicles allows vehicles to share crucial vehicle data, such as vehicle acceleration and speed, with each other. Using sensors such as radars and lidars, on the other hand, the intravehicular distance between a leader vehicle and a host vehicle can be detected. Cooperative Adaptive Cruise Control (CACC) builds upon ground vehicle connectivity and sensor information to form convoys with automated car following. CACC can also be used to improve fuel economy and mobility performance of vehicles in the said convoy. In this paper, a CACC system is presented, where the acceleration of the lead vehicle is used in the calculation of desired vehicle speed. In addition to the smooth car following abilities, the proposed CACC also has the capability to calculate a speed profile for the ego vehicle that is fuel efficient, making it an Ecological CACC (Eco-CACC) model.
Technical Paper

Trends in Driver Response to Forward Collision Warning and the Making of an Effective Alerting Strategy

2024-04-09
2024-01-2506
This paper compares the results from three human factors studies conducted in a motion-based simulator in 2008, 2014 and 2023, to highlight the trends in driver's response to Forward Collision Warning (FCW). The studies were motivated by the goal to develop an effective HMI (Human-Machine Interface) strategy that enables the required driver's response to FCW while minimizing the level of annoyance of the feature. All three studies evaluated driver response to a baseline-FCW and no-FCW conditions. Additionally, the 2023 study included two modified FCW chime variants: a softer FCW chime and a fading FCW chime. Sixteen (16) participants, balanced for gender and age, were tested for each group in all iterations of the studies. The participants drove in a high-fidelity simulator with a visual distraction task (number reading). After driving 15 minutes in a nighttime rural highway environment, a surprise forward collision threat arose during the distraction task.
Technical Paper

Vehicle Seat Occupancy Detection and Classification Using Capacitive Sensing

2024-04-09
2024-01-2508
Improving passenger safety inside vehicle cabins requires continuously monitoring vehicle seat occupancy statuses. Monitoring a vehicle seat’s occupancy status includes detecting if the seat is occupied and classifying the seat’s occupancy type. This paper introduces an innovative non-intrusive technique that employs capacitive sensing and an occupancy classifier to monitor a vehicle seat’s occupancy status. Capacitive sensing is facilitated by a meticulously constructed capacitance-sensing mat that easily integrates with any vehicle seat. When a passenger or an inanimate object occupies a vehicle seat equipped with the mat, they will induce variations in the mat’s internal capacitances. The variations are, in turn, represented pictorially as grayscale capacitance-sensing images (CSI), which yield the feature vectors the classifier requires to classify the seat’s occupancy type.
Technical Paper

Side Impact Characteristics in Modern Light Vehicles

2024-04-09
2024-01-2646
Occupant protection in side impacts, in particular for near-side occupants, is a challenge due to the occupant’s close proximity to the impact. Near-side occupants have limited space to ride down the impact. Curtain and side airbags fill the gap between occupant and the side interior. This analysis was conducted to provide insight on the characteristics of side impacts and the relevancy of currently regulated test configurations. For this purpose, 2007-2015 NASS-CDS and 2017-2021 CISS side crash data were analyzed for towed light vehicles. 2008 and newer model year vehicle data was selected to ensure that most vehicles were equipped with side/curtain airbags. The results showed that side impacts accounted for approximately 26.7% of the vehicles involved and 18.9% of the vehicles with at least one seriously injured occupant. Most side impacts involved damage to the front and front-to-center of the vehicle.
Technical Paper

Next Generation High Efficiency Boosted Engine Concept

2024-04-09
2024-01-2094
This work represents an advanced engineering research project partially funded by the U.S. Department of Energy (DOE). Ford Motor Company, FEV North America, and Oak Ridge National Laboratory collaborated to develop a next generation boosted spark ignited engine concept. The project goals, specified by the DOE, were 23% improved fuel economy and 15% reduced weight relative to a 2015 or newer light-duty vehicle. The fuel economy goal was achieved by designing an engine incorporating high geometric compression ratio, high dilution tolerance, low pumping work, and low friction. The increased tendency for knock with high compression ratio was addressed using early intake valve closing (EIVC), cooled exhaust gas recirculation (EGR), an active pre-chamber ignition system, and careful management of the fresh charge temperature.
Technical Paper

Driving Towards a Sustainable Future: Leveraging Connected Vehicle Data for Effective Carbon Emission Management

2024-01-08
2023-36-0145
The rise of greenhouse gas emissions has reached historic levels, with 37 billion tons of CO2 released into the atmosphere in 2018 alone. In the European Union, 32% of these emissions come from transportation, with 73.3% of that percentage coming from vehicles. To address this problem, solutions such as cleaner fuels and more efficient engines are necessary. Artificial Intelligence can also play a crucial role in climate analysis and verification to move towards a more sustainable future. By utilizing connected vehicle data, automakers can analyze real-time vehicle performance data to identify opportunities for improvement and reduce carbon emissions. This approach benefits the environment, improves vehicle quality, and reduces engineering work time, making it a win-win solution. Connected vehicle data offers a wealth of information on vehicle performance, such as fuel consumption and carbon emissions.
Technical Paper

A systematic review on smart coatings for automotive applications

2024-01-08
2023-36-0126
Corrosion affects all industrial sectors where metals or metal alloys are used in their structures. In the automotive industry, the continuous search for lightweight parts has increased the demand for effective corrosion protection, in order to improve vehicle performance without compromising durability and safety. In this scenario, coatings are essential elements to preserve and protect vehicle parts from various environmental aggressions. Automotive coatings can be classified into primers, topcoats, clearcoats, and specialty coatings. Primers provide corrosion resistance and promote adhesion between the substrate and topcoat. Topcoats provide color, gloss, and durability to the coating system, while clearcoats enhance the appearance and durability of the finish. Specialty coatings provide additional properties, such as scratch resistance, chemical resistance, and UV protection.
Technical Paper

Development of a 5-Component Diesel Surrogate Chemical Kinetic Mechanism Coupled with a Semi-Detailed Soot Model with Application to Engine Combustion and Emissions Modeling

2023-08-28
2023-24-0030
In the present work, five surrogate components (n-Hexadecane, n-Tetradecane, Heptamethylnonane, Decalin, 1-Methylnaphthalene) are proposed to represent liquid phase of diesel fuel, and another different five surrogate components (n-Decane, n-Heptane, iso-Octane, MCH (methylcyclohexane), Toluene) are proposed to represent vapor phase of diesel fuel. For the vapor phase, a 5-component surrogate chemical kinetic mechanism has been developed and validated. In the mechanism, a recently updated H2/O2/CO/C1 detailed sub-mechanism is adopted for accurately predicting the laminar flame speeds over a wide range of operating conditions, also a recently updated C2-C3 detailed sub-mechanism is used due to its potential benefit on accurate flame propagation simulation. For each of the five diesel vapor surrogate components, a skeletal sub-mechanism, which determines the simulation of ignition delay times, is constructed for species C4-Cn.
Technical Paper

Performance and Network Architecture Options of Consolidated Object Data Service for Multi-RAT Vehicular Communication

2023-04-11
2023-01-0857
With the proliferation of ADAS and autonomous systems, the quality and quantity of the data to be used by vehicles has become crucial. In-vehicle sensors are evolving, but their usability is limited to their field of view and detection distance. V2X communication systems solve these issues by creating a cooperative perception domain amongst road users and the infrastructure by communicating accurate, real-time information. In this paper, we propose a novel Consolidated Object Data Service (CODS) for multi-Radio Access Technology (RAT) V2X communication. This service collects information using BSM packets from the vehicular network and perception information from infrastructure-based sensors. The service then fuses the collected data, offering the communication participants with a consolidated, deduplicated, and accurate object database. Since fusing the objects is resource intensive, this service can save in-vehicle computation costs.
Technical Paper

Hierarchical Neural Network-Based Prediction Model of Pedestrian Crossing Behavior at Unsignalized Crosswalks

2023-04-11
2023-01-0865
To enable smooth and low-risk autonomous driving in the presence of other road users, such as cyclists and pedestrians, appropriate predictive safe speed control strategies relying on accurate and robust prediction models should be employed. However, difficulties related to driving scene understanding and a wide variety of features influencing decisions of other road users significantly complexifies prediction tasks and related controls. This paper proposes a hierarchical neural network (NN)-based prediction model of pedestrian crossing behavior, which is aimed to be applied within an autonomous vehicle (AV) safe speed control strategy. Additionally, different single-level prediction models are presented and analyzed as well, to serve as baseline approaches.
Technical Paper

ES2re, WS50M, and Human Body Models in Far-Side Pole Impacts

2023-04-11
2023-01-0558
Driver oblique far-side sled impacts were simulated with three surrogates. The EuroSID side impact dummy with rib extension (ES2re), the WorldSID side impact 50th percentile male dummy (WS50M), and the Global Human Body Modeling Consortium’s 50th percentile male human body (GHBM) models. The versions of the surrogates’ models were 7.0, 7.5.1, and 5.0, respectively. Surrogates were seated in the front left driver seat in a virtual generic crossover sled environment. The Finite Element (FE) based environment consisted of a driver seat, a center console, and a passenger seat. Two restraint systems were considered for each surrogate: belt only (BO) and belt plus a generic seat-mounted far-side impact airbag (BB). Surrogates were restrained using a 3-point belt that has a digressive shoulder force load limiter, and retractor, and anchor pretensioners. The far-side airbag used was a 37-liter in volume and has two chambers.
Technical Paper

Sun Radiation Estimation on Display Screens through Virtual Simulation

2023-04-11
2023-01-0767
Currently the automotive industry has been under extremely important technological changes. Part of these changes are related to the way that users interact with the vehicle and fundamental components are the new digital cluster and screens. These devices have created a disruption in the way information is transmitted to the user, being essential for vehicle operation, including safety. Due to new operating conditions, multiple evaluations need to be performed, one of them is the solar temperature Load to ensure correct operation without compromising user safety. This test is required to identify the thermal performance on the screens mounted on the instrument panel. The performance identification is performed on both sides, analytical and physical. In regards finite element simulation it represents the solar chamber as the main source of heat and being the main mechanism of transmission the radiation.
Technical Paper

High Cell Density Flow Through Substrate for New Regulations

2023-04-11
2023-01-0359
This paper, written in collaboration with Ford, evaluates the effectiveness of higher cell density combined with higher porosity, lower thermal mass substrates for emission control capability on a customized, RDE (Real Driving Emissions)-type of test cycle run on a chassis dynamometer using a gasoline passenger car fitted with a three-way catalyst (TWC) system. Cold-start emissions contribute most of the emissions control challenge, especially in the case of a very rigorous cold-start. The majority of tailpipe emissions occur during the first 30 seconds of the drive cycle. For the early engine startup phase, higher porosity substrates are developed as one part of the solution. In addition, further emission improvement is expected by increasing the specific surface area (GSA) of the substrate. This test was designed specifically to stress the cold start performance of the catalyst by using a short, 5 second idle time preceding an aggressive, high exhaust mass flowrate drive cycle.
Technical Paper

An Evaluation of External Human-Machine Interfaces and Compliance with Federal Motor Vehicle Safety Standard 108

2023-04-11
2023-01-0583
For Automated Vehicles (AVs) to be successful, they must integrate into society in a way that makes everyone confident in how AVs work to serve people and their communities. This integration requires that AVs communicate effectively, not only with other vehicles, but with all road users, including pedestrians and cyclists. One proposed method of AV communication is through an external human-machine interface (eHMI). While many studies have evaluated eHMI solutions, few have considered their compliance with relevant Federal Motor Vehicle Safety Standards (FMVSS) and their scalability. This study evaluated the effectiveness of a lightbar eHMI to communicate AV intent by measuring user comprehension of the eHMI and its impact on pedestrians’ trust and acceptance of AVs.
Technical Paper

Generation of Reactive Chemical Species/Radicals through Pilot Fuel Injection in Negative Valve Overlap and Its Effects on Engine Performances

2022-08-30
2022-01-1002
This study investigated the potential of generating reactive chemical species (including radicals) through pilot fuel injection in negative valve overlap for improving the combustion and emissions performances of spark ignition gasoline engines under low load and low speed operating conditions. Several Ford sub-models were used for simulating the physics and chemistry processes of injecting a small amount of fuel in NVO (negative valve overlap). Effects of different NVO degrees and different pilot injection timings, factors for fuel conversion were simulated and investigated. CO and H2 conversions during NVO, CO and H2 amounts before spark timing were used for comparing different schemes.
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Technical Paper

On the Utility of Ammonia Sensors for Diesel Emissions Control

2022-03-29
2022-01-0549
This paper analyzes the use of an ammonia sensor for feedback control in diesel exhaust systems. We build our case around the specific example of the heavy duty transient cycle, and an exhaust system with an SCR catalyst, a single urea injector and an upstream and downstream NOx sensor. A key component in our analysis is the inclusion of the tolerance of the ammonia sensor. We show that with the current understanding of the sensor tolerance, the ammonia sensor has limited benefit for controls.
Journal Article

Rear-End Impacts - Part 2: Sled Pulse Effect on Front-Seat Occupant Responses

2022-03-29
2022-01-0854
This study was conducted to assess the effects of differing rear impact pulse characteristics on restraint performance, front-seat occupant kinematics, biomechanical responses, and seat yielding. Five rear sled tests were conducted at 40.2 km/h using a modern seat. The sled buck was representative of a generic sport utility vehicle. A 50th percentile Hybrid III ATD was used. The peak accelerations, acceleration profiles and durations were varied. Three of the pulses were selected based on published information and two were modeled to assess the effects of peak acceleration occurring early and later within the pulse duration using a front and rear biased trapezoidal characteristic shape. The seatback angle at maximum rearward deformation varied from 46 to 67 degrees. It was lowest in Pulse 1 which simulates an 80 km/h car-to-car rear impact.
Journal Article

Seat Belt Restraint Evidence Generated by Unrestrained Occupant Interaction in a Rollover

2022-03-29
2022-01-0846
Assessment of the physical evidence on a seat belt restraint system provides one source of data for determining an occupant’s seat belt use or non-use during a motor vehicle crash. The evidence typically associated with loading from a restrained occupant has been extensively researched and documented in the literature. However, evidence of loading to the restraint system can also be generated by other means, including the interaction of an unrestrained occupant with a stowed restraint system. The present study evaluates physical evidence on multiple stowed restraint systems generated via interaction with unrestrained occupants during a full-scale dolly rollover crash test of a large multiple passenger van. Unbelted anthropomorphic test devices (ATDs) were positioned in the driver and right front passenger seats and in all designated seating positions in the third, fourth, and fifth rows.
Journal Article

Real-time Detection and Avoidance of Obstacles in the Path of Autonomous Vehicles Using Monocular RGB Camera

2022-03-29
2022-01-0074
In this paper, we present an end-to-end real-time detection and collision avoidance framework in an autonomous vehicle using a monocular RGB camera. The proposed system is able to run on embedded hardware in the vehicle to perform real-time detection of small objects. RetinaNet architecture with ResNet50 backbone is used to develop the object detection model using RGB images. A quantized version of the object detection inference model is implemented in the vehicle using NVIDIA Jetson AGX Xavier. A geometric method is used to estimate the distance to the detected object which is forwarded to a MicroAutoBox device that implements the control system of the vehicle and is responsible for maneuvering around the detected objects. The pipeline is implemented on a passenger vehicle and demonstrated in challenging conditions using different obstacles on a predefined set of waypoints.
X