Refine Your Search

Topic

Author

Search Results

Technical Paper

Reduction of Computational Efforts to Obtain Parasitic Capacitances Using FEM in Three-Phase Permanent Magnet Motors

2024-04-09
2024-01-2742
The rise in demand for electric and hybrid vehicles, the issue of bearing currents in electric motors has become increasingly relevant. These vehicles use inverters with high frequency switch that generates the common mode voltage and current, the main factor responsible for bearing issues. In the machine structure, there are some parasitic capacitances that exist inherently. They provide a low impedance path for the generated current, which flows through the machine bearing. Investigating this problem in practical scenarios during the design stage is costly and requires great effort to measure these currents. For this reason, a strategy of analysis aided by electromagnetic simulation software can achieve desired results in terms of complexity and performance. This work proposes a methodology using Ansys Maxwell software to simulate two-dimensional (2D) and three-dimensional (3D) model of a three-phase permanent magnet motor with eight poles.
Technical Paper

Optimal Control Co-Design of a Parallel Electric-Hydraulic Hybrid Vehicle

2024-04-09
2024-01-2154
This paper presents an optimal control co-design framework of a parallel electric-hydraulic hybrid powertrain specifically tailored for heavy-duty vehicles. A pure electric powertrain, comprising a rechargeable lithium-ion battery, a highly efficient electric motor, and a single or double-speed gearbox, has garnered significant attention in the automotive sector due to the increasing demand for clean and efficient mobility. However, the state-of-the-art has demonstrated limited capabilities and has struggled to meet the design requirements of heavy-duty vehicles with high power demands, such as a class 8 semi-trailer truck. This is especially evident in terms of a driving range on one battery charge, battery charging time, and load-carrying capacity. These challenges primarily stem from the low power density of lithium-ion batteries and the low energy conversion efficiency of electric motors at low speeds.
Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Technical Paper

Optimization of Gaussian Process Regression Model for Characterization of In-Vehicle Wet Clutch Behavior

2022-03-29
2022-01-0222
The advancement of Machine-learning (ML) methods enables data-driven creation of Reduced Order Models (ROMs) for automotive components and systems. For example, Gaussian Process Regression (GPR) has emerged as a powerful tool in recent years for building a static ROM as an alternative to a conventional parametric model or a multi-dimensional look-up table. GPR provides a mathematical framework for probabilistically representing complex non-linear behavior. Today, GPR is available in various programing tools and commercial CAE packages. However, the application of GPR is system dependent and often requires careful design considerations such as selection of input features and specification of kernel functions. Hence there is a need for GPR design optimization driven by application requirements. For example, a moving window size for training must be tuned to balance performance and computational efficiency for tracking changing system behavior.
Technical Paper

Machine-Learning Approach to Behavioral Identification of Hybrid Propulsion System and Component

2022-03-29
2022-01-0229
Accurate determination of driveshaft torque is desired for robust control, calibration, and diagnosis of propulsion system behaviors. The real-time knowledge of driveshaft torque is also valuable for vehicle motion controls. However, online identification of driveshaft torque is difficult during transient drive conditions because of its coupling with vehicle mass, road grade, and drive resistance as well as the presence of numerous noise factors. A physical torque sensor such as a strain-gauge or magneto-elastic type is considered impractical for volume production vehicles because of packaging requirements, unit cost, and manufacturing investment. This paper describes a novel online method, referred to as Virtual Torque Sensor (VTS), for estimating driveshaft torque based on Machine-Learning (ML) approach. VTS maps a signal from Inertial Measurement Unit (IMU) and vehicle speed to driveshaft torque.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Technical Paper

Economic Impacts of Vehicle-to-Grid Technology implementation for the Consumers in Brazil

2022-02-04
2021-36-0068
This article aims to analyze the potential economic effects for consumers with the implementation of the Vehicle-to-Grid (V2G) and the Vehicle-to-Home (V2H) networks in Brazil. Nowdays, the usage of both technologies in Brazil are at a regulatory vacuum for both Battery Electric Vehicles (BEVs), Plug-in Hybrid Electric Vehicles (PHEVs) and Hybrid Electric Vehicles (HEVs). Usually, when a legislation lack occurs, the local OEMs adopt IECs (International Electrotechnical Commissions) and/or SAEs (Society of Automotive Engineers) reference international standards, such as SAE J1634 for range test.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Journal Article

Machine Learning Approach for Constructing Wet Clutch Torque Transfer Function

2021-04-06
2021-01-0712
A wet clutch is an established component in a conventional powertrain. It also finds a new role in electrified systems. For example, a wet clutch is utilized to couple or decouple an internal combustion engine from an electrically-driven drivetrain on demand in hybrid electric vehicles. In some electrical vehicle designs, it provides a means for motor speed reduction. Wet clutch control for those new applications may differ significantly from conventional strategy. For example, actuator pressure may be heavily modulated, causing the clutch to exhibit pronounced hysteresis. The clutch may be required to operate at a very high slip speed for unforeseen behaviors. A linear transfer function is commonly utilized for clutch control in automating shifting applications, assuming that clutch torque is proportional to actuator pressure. However, the linear model becomes inadequate for enabling robust control when the clutch behavior becomes highly nonlinear with hysteresis.
Technical Paper

Adaptive Optimal Management Strategy for Hybrid Vehicles Based on Pontryagin’s Minimum Principle

2020-04-14
2020-01-1191
The energy management strategies (EMS) for hybrid electric vehicles (HEV) have a great impact on the fuel economy (FE). The Pontryagin's minimum principle (PMP) has been proved to be a viable control strategy for HEV. The optimal costate of the PMP control can be determined by the given information of the driving conditions. Since the full knowledge of future driving conditions is not available, this paper proposed a dynamic optimization method for PMP costate without the prediction of the driving cycle. It is known that the lower fuel consumption the method yields, the more efficiently the engine works. The selection of costate is designed to make the engine work in the high efficiency range. Compared with the rule-based control, the proposed method by the principle of Hamiltonian, can make engine working points have more opportunities locating in the middle of high efficiency range, instead of on the boundary of high efficiency range.
Technical Paper

Engine and Aftertreatment Co-Optimization of Connected HEVs via Multi-Range Vehicle Speed Planning and Prediction

2020-04-14
2020-01-0590
Connected vehicles (CVs) have situational awareness that can be exploited for control and optimization of the powertrain system. While extensive studies have been carried out for energy efficiency improvement of CVs via eco-driving and planning, the implication of such technologies on the thermal responses of CVs (including those of the engine and aftertreatment systems) has not been fully investigated. One of the key challenges in leveraging connectivity for optimization-based thermal management of CVs is the relatively slow thermal dynamics, which necessitate the use of a long prediction horizon to achieve the best performance. Long-term prediction of the CV speed, unlike the short-range prediction based on vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications-based information, is difficult and error-prone.
Technical Paper

DC-Link Capacitor Sizing in HEV/EV e-Drive Power Electronic System from Stability Viewpoint

2020-04-14
2020-01-0468
Selection of the DC-link capacitance value in an HEV/EV e-Drive power electronic system depends on numerous factors including required voltage/current ratings of the capacitor, power dissipation, thermal limitation, energy storage capacity and impact on system stability. A challenge arises from the capacitance value selection based on DC-link stability due to the influence of multiple hardware parameters, control parameters, operating conditions and cross-coupling effects among them. This paper discusses an impedance-based methodology to determine the minimum required DC-link capacitance value that can enable stable operation of the system in this multi-dimensional variable space. A broad landscape of the minimum capacitance values is also presented to provide insights on the sensitivity of system stability to operating conditions.
Technical Paper

Internal Model Control during Mode Transition Subject to Time Delay for Hybrid Electric Vehicles

2020-04-14
2020-01-0961
With the rapid development of series-parallel hybrid electric vehicles (SPHEVs), mode transition from pure electrical drive to hybrid drive has attracted considerable attention. The presence of time delay due to response capacity of actuators and signal transmission of communication may cause decrease of speed tracking accuracy, even instable dynamics. Consequently, drivability of the SPHEV is unacceptable, and durability of the components is reduced. So far, plenty of control strategies have been proposed for mode transition, however, no previous research has been reported to deal with the time delay during mode transition. In this paper, a dynamic model with time delay of hybrid electric system is established. Next, a mode transition time-delay controller is proposed based on a two degree of freedom internal model controller (2-DOF-IMC).
Technical Paper

Diagnostic Evaluation of Exhaust Gas Recirculation (EGR) System on Gasoline Electric Hybrid Vehicle

2020-04-14
2020-01-0902
Diagnosing the Exhaust Gas Recirculation (EGR) Valve remains one of the most challenging problems in emissions control systems diagnostics. California Air Resources Board (CARB) has started imposing specific requirements on automotive companies since 2011 that required the integration of on-board diagnostics (OBD) monitor for the detection and reporting of this type of control malfunction. In this paper, some methodologies of EGR valve system monitoring are investigated and a novel approach is proposed that shows reliable detection capability compared to the other methods. The proposed method requires certain conditions during deceleration fuel shutoff events to intrusively reactivate the EGR system and determine the obstructed valve condition. The method was evaluated on a 2.5L iVCT engine in an experimental Ford Escape Full Hybrid Electric vehicle. Vehicle results are shown and discussed.
Journal Article

Integrated Regenerative Braking System and Anti-Lock Braking System for Hybrid Electric Vehicles & Battery Electric Vehicles

2020-04-14
2020-01-0846
This paper describes development of an integrated regenerative braking system and anti-lock brake system (ABS) control during an ABS event for hybrid and electric vehicles with drivelines containing a single electric motor connected to the axle shaft through an open differential. The control objectives are to recuperate the maximum amount of kinetic energy during an ABS event, and to provide no degraded anti-lock control behavior as seen in vehicles with regenerative braking disabled. The paper first presents a detailed control system analysis to reveal the inherent property of non-zero regenerative braking torque control during ABS event and explain the reason why regenerative braking torque can increase the wheel slip during ABS event with existing regenerative braking control strategies.
Technical Paper

Integrated Multi-Physics Simulation for Full-Vehicle Low Frequency NVH Optimization in HEVs

2019-06-05
2019-01-1455
The recent automotive industry trend towards electrification has created new challenges for NVH engineers. These challenges stem from new powertrain architectures and their complex interactions, the governing control strategies which aim to optimize energy management, and new unmasked sources of excitation. Additionally, vehicle manufacturers are attempting to reduce hardware testing in order to rapidly satisfy increasing production demand and to minimize its costs. Hence, to meet the above-mentioned challenges up front in the development process of Hybrid Electrical Vehicles (HEVs) while balancing competing design objectives of drivability, durability and NVH, a simulation-led design and optimization is required. NVH problems are often the result of mechanisms that originate through complex interactions between different physical domains (flow, electromagnetic, structural/mechanical, control logic, etc.) and the assembly of individual components into a complete system.
Technical Paper

Design of a SiC Based Variable Voltage Converter for Hybrid Electric Vehicle

2019-04-02
2019-01-0605
Variable Voltage Converter (VVC) is adopted in Power-Split structure of hybrid electric vehicles (HEVs) to optimize the Electric-Drive (e-Drive) system performance. With the wider availability of Silicon Carbide (SiC) power semiconductor for automotive applications, there are new opportunities to further optimize and improve performance of VVC, e.g. lower power loss, smaller size, and lighter weight, comparing to use traditional Silicon (Si) IGBT and diode. In this paper, a SiC based VVC is designed, prototyped, and evaluated. In order to maximize the benefits of SiC power devices in VVC application, each key component is carefully designed and selected, including SiC power module, power capacitor, and power inductor. The characterization and evaluation results demonstrate the benefits of advanced SiC devices in VVC design optimization, and such benefits quantified in this paper.
Technical Paper

Robust Speed Synchronization Control for an Integrated Motor-Transmission Powertrain System with Feedback Delay

2019-04-02
2019-01-1206
Motor speed synchronization is important in gear shifting of emerging clutchless automated manual transmissions for battery electric vehicles (BEV) and other kinds of parallel shaft-based powertrains for hybrid electric vehicles (HEV). Difficulties of the problem mainly come from random delay induced by network communication and unknown load torques from air drag, oil drag, and friction torques, etc. To deal with these two factors, this paper proposes a robust speed synchronization controller based on act-and-wait control and disturbance observer. The former is a kind of periodical controller specially for regulating problems with feedback delay while the latter is a technique for active disturbance rejection. Firstly, the dynamic model of the motor shaft is formulated, and the system parameters are offline identified. The speed tracking problem is then transformed into a regulating one.
Technical Paper

Fidelity Enhancement of Power-Split Hybrid Vehicle HIL (Hardware-in-the-Loop) Simulation by Integration with High Voltage Traction Battery Subsystem

2018-04-03
2018-01-0008
Due to the increasing concerns on energy and environmental issues, the automotive industry has seen increased growth and development of electric and electrified vehicles [1]. The power-split design is one of the most common drivetrain configurations of a hybrid or electrified vehicle. The propulsion system of a power-split hybrid vehicle typically comprises of an engine drive system in which the engine, drivetrain and generator are mechanically coupled on a planetary gear set driveline while the electric drive system consists of a high voltage battery and a traction motor [2]. In recent years, Hardware-in-the-Loop (HIL) simulation has become an increasingly common approach for controls rapid prototyping and validation as part of the automotive product development cycle [2, 3].
Technical Paper

Model Prediction Based Boost Converter Control Method for HEV Applications

2018-04-03
2018-01-0452
Boost converter is widely applied to hybrid electric vehicles (HEV). Typical control methods employ two proportional-integral (PI) regulators to fulfill DC bus voltage closed-loop control and inductor current closed-loop control, respectively. They have intrinsic performance limitations: 1) slow dynamic response of DC bus voltage regulation; 2) high overshoot voltage during transient state; 3) it is difficult to design four gains best fit all operational conditions. This paper proposes a model prediction based boost converter control method for HEV applications. The proposed control method employs model based instantaneous power prediction and dynamic optimization in real time by minimizing a defined cost function to overcome above issues. First of all, the issues of typical control methods are analyzed. Then, the proposed control method is presented in detail, followed by simulation verification and comparison with PI based control method.
X