Refine Your Search

Topic

Author

Search Results

Technical Paper

A Method for Determining Mileage Accumulation for Robustness Validation of Advanced Driver Assistance Systems (ADAS) Features

2024-04-09
2024-01-1977
Robustness testing of Advanced Driver Assistance Systems (ADAS) features is a crucial step in ensuring the safety and reliability of these systems. ADAS features include technologies like adaptive cruise control, lateral and longitudinal controls, automatic emergency braking, and more. These systems rely on various sensors, cameras, radar, lidar, and software algorithms to function effectively. Robustness testing aims to identify potential vulnerabilities and weaknesses in these systems under different conditions, ensuring they can handle unexpected scenarios and maintain their performance. Mileage accumulation is one of the validation methods for achieving robustness. It involves subjecting the systems to a wide variety of real-world driving conditions and driving scenarios to ensure the reliability, safety, and effectiveness of the ADAS features.
Technical Paper

Comparison of Methods Between an Acceleration-Based In-Situ and a New Hybrid In-Situ Blocked Force Determination

2022-06-15
2022-01-0979
The NVH-development cycle of vehicle components often requires a source characterization separated from the vehicle itself, which leads to the implementation of test bench setups. In the context of frequency based substructuring and transfer path analysis, a component can be characterized using Blocked Forces. The following paper provides a comparison of methods between an acceleration-based in-situ and a new hybrid in-situ Blocked Force determination, using measurements of an artificially excited electric power steering (EPS). Under real-life conditions on a test rig, the acceleration-based in-situ approach often shows limitations in the lower frequency range, due to relatively bad signal-to-noise ratio at the indicator sensors, while delivering accurate results in the higher spectrum. Due to considerable loads on components in operation, the stiffness of the test-rig cannot be decreased arbitrarily.
Journal Article

Braking Systems for High Performance Electric Vehicles - A Design Study

2020-10-05
2020-01-1612
Any young person who has taken delight in playing with toy slot cars knows that the world of racing and the world of electric cars has been intertwined for a long time. And anyone who has driven a modern performance electric vehicle knows that the instant acceleration, exhilarating speeds, and joy of driving of slot cars is reflected in these full sized “toys”, with the many more practical benefits that come from being full-sized and steerable. There is strong foreshadowing of a vibrant future for performance cars in some of the EV’s on the market now and in the near future, some offering “ludicrous” acceleration, and others storied nameplates with performance to match. The ease at which powerful electric drives can capably hurtle a massive vehicle around the track at high speeds, combined with the potential for the same electric drives to exert powerful regenerative braking, creates a very interesting situation for brake engineers.
Journal Article

Model-Based Design of Service-Oriented Architectures for Reliable Dynamic Reconfiguration

2020-04-14
2020-01-1364
Service-oriented architectures (SOAs) are well-established solutions in the IT industry. Their use in the automotive domain is still on the way. Up to now, the automotive domain has taken advantage of service-oriented architectures only in the area of infotainment and not for systems with hard real-time requirements. However, applying SOA to such systems has just started but is missing suitable design and verification methodologies. In this context, we target to include the notion of model-based design to address fail-operational systems. As a result, a model-based approach for the development of fail-operational systems based on dynamic reconfiguration using a service-oriented architecture is illustrated. For the evaluation, we consider an example function of an automatically controlled braking system and analyze the reconfiguration time when the function fails.
Technical Paper

Development of Evaluation Methods for Steering Loss of Assist

2019-04-02
2019-01-1236
Loss of power steering assist (LoA) is viewed as a potential hazard in certain vehicle operational scenarios. Despite the importance of this steering failure mode, few published test protocols for the objective or subjective evaluation of vehicle performance in a loss of assist situation exist. The first part of this paper examines five of the key steering failure modes that can result in LoA and discusses why LoA persists as a key industry challenge. The second part analyzes the situational dynamics affecting vehicle controllability during a LoA event and proposes a subjective evaluation driving course that facilitates evaluations in various LoA scenarios. A corresponding objective test procedure and metric is also proposed. These evaluation methods support consistent performance evaluation of physical vehicles while also enabling the prediction of vehicle characteristics early in the vehicle development process (VDP).
Technical Paper

A Qualitative and Quantitative Aerodynamic Study of a Rotating Wheel inside a Simplified Vehicle Body and Wheel Liner Cavity

2019-04-02
2019-01-0658
As automotive OEMs (Original Equipment Manufacturer) struggle to reach a balance between Design and Performance, environmental legislations continues to demand more rapid gains in vehicle efficiency. As a result, more attention is being given to the contributions of both tire and wheels. Not only tire rolling resistance, but also tire and wheel aerodynamics are being shown to be contributors to overall efficiency. To date, many studies have been done to correlate CFD simulations of rotating wheels both in open and closed wheeled environments to windtunnel results. Whereas this ensures proper predictive capabilities, little focus has been given to thoroughly explaining the physics that govern this complex environment. This study seeks to exhaustively investigate the complex interactions between the ground, body, and a rotating tire/wheel.
Technical Paper

Customer Oriented Vehicle Dynamics Assessment for Autonomous Driving in Highway

2019-04-02
2019-01-1020
Autonomous Driving is one of the main subjects of academic research and one important trend in the automotive industry. With the advent of self-driving vehicles, the interest around trajectory planning raises, in particular when a customer-oriented analysis is performed, since more and more the carmakers will have to pay attention to the handling comfort. With that in mind, an experimental approach is proposed to assess the main characteristics of human driving and gain knowledge to enhance quality of autonomous vehicles. Focusing on overtaking maneuvers in a highway environment, four comfort indicators are proposed aiming to capture the key aspects of the chosen paths of a heterogeneous cohort. The analysis of the distribution of these indicators (peak to peak lateral acceleration, RMS lateral acceleration, Smoothness and Jerk) allowed the definition of a human drive profile.
Technical Paper

Development of ECE R51.03 Noise Emission Regulation

2017-06-05
2017-01-1893
This paper will examine the regulatory development process, discuss the technical principles of the Economic Commission for Europe (ECE), R51.03 test, and discuss the overall objectives of the ECE R51.03 noise emission regulation. The development of this global noise emission regulation was a multi-stakeholder process which has resulted in new test procedures and new noise emission regulation principles. New test procedures based on ISO 362-1:2015 move the test basis to representative in-use noise emission, independent of vehicle propulsion technology. As part of the regulatory development, a monitoring program was conducted by the European Union to assess the applicability of the proposed test to provide representative vehicle noise emission results. The monitoring results also provided the basis to determine equivalent stringency between the test procedures of ECE R51.02 and R51.03.
Technical Paper

Experimental Study of Howl Noise Phenomenon Related to Drum Brake Squeal

2017-05-24
2017-36-0007
The improvement of motor’s power requires consequently the improvement in brake system also. The kinetic energy of moving vehicles is transformed in a big part of heat, but there is a part that can be transformed in vibration and sound pressure. One of these vibration and sound pressure complain is known as howl noise. The howl noise complain is very intense and uncomfortable for passengers and pedestrians. Today, the customers spend a lot of money in his vehicles comfort and this disorder can’t occur. This paper presents a methodology which uses Experimental Modal Analysis (EMA) and Operational Modal Analysis (OMA) to survey the dynamic behavior of suspension and brake systems at the howl noise occurrence condition.
Technical Paper

Variation of Rotor Natural Frequencies Due to Manufacturing and Its Influence on Disc Brake Noise Generation

2017-05-24
2017-36-0006
Brake noise causes discomfort to passengers and a perception of reduced vehicle quality. Other types of vehicle noises have been significantly reduced and consequently brake noise and vibration are becoming more perceivable by owners, leading to high warranty costs. It is known in the Brake Industry that the natural frequencies of brake rotors may have a significant participation in disc brake squeal generation, and, a robust process control of this characteristic in the manufacturing gives an important contribution to reduce brake noise. However, recent studies have demonstrated a significant variation of natural frequencies due to manufacturing and this is the outcome of carbon equivalent content in gray cast iron. This paper is concerned with the understanding of this phenomenon and its influence on disc brake noise generation. For this research, it was manufactured two batches of this rotor from two different grades of carbon equivalent.
Technical Paper

Study of Temperature Reduction in Automobile Brake Discs by Forced Convection

2017-05-24
2017-36-0020
The brake system is one of the most important safety systems of the vehicle. So far, several researches are being conducted with the objective of improve its efficiency. In a disc brake, it is the friction between the pads and the rotor the responsible for kinetic energy conversion into heat and brake torque generation. Demanding brake applications, can generate high temperatures levels which can reduce the friction coefficient between pads and rotor, reducing brake efficiency. Thus, the present work aims to evaluate the front disc temperature drop by the installation of a duct on the vehicle frontal bumper to direct the outside air into the wheelhouse This duct has the function to direct the outside air towards to the brake disc. Theoretical studies, Computational Fluid Dynamics (CFD) simulations and experimental dynamometer tests were carried out.
Journal Article

Gasoline Anti-Knock Index Effects on Vehicle Net Power at High Altitude

2017-03-28
2017-01-0801
Automakers are designing smaller displacement engines with higher power densities to improve vehicle fuel economy, while continuing to meet customer expectations for power and drivability. The specific power produced by the spark-ignited engine is constrained by knock and fuel octane. Whereas the lowest octane rating is 87 AKI (antiknock index) for regular gasoline at most service stations throughout the U.S., 85 AKI fuel is widely available at higher altitudes especially in the mountain west states. The objective of this study was to explore the effect of gasoline octane rating on the net power produced by modern light duty vehicles at high altitude (1660 m elevation). A chassis dynamometer test procedure was developed to measure absorbed wheel power at transient and stabilized full power operation. Five vehicles were tested using 85 and 87 AKI fuels.
Technical Paper

Technology from Highly Automated Driving to Improve Active Pedestrian Protection Systems

2017-03-28
2017-01-1409
Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is currently one of the main goals in the development of future vehicles. The focus is the implementation of automated driving functions for structured environments, such as on the motorway. To achieve this goal, vehicles are equipped with additional technology. This technology should not only be used for a limited number of use cases. It should also be used to improve Active Safety Systems during normal non-automated driving. In the first approach we investigate the usage of machine learning for an autonomous emergency braking system (AEB) for the active pedestrian protection safety. The idea is to use knowledge of accidents directly for the function design. Future vehicles could be able to record detailed information about an accident. If enough data from critical situations recorded by vehicles is available, it is conceivable to use it to learn the function design.
Technical Paper

Effects of Altitude and Road Gradients in Boosted Hydraulic Brake Systems

2016-04-05
2016-01-0463
Brake systems are strongly related with safety of vehicles. Therefore a reliable design of the brake system is critical as vehicles operate in a wide range of environmental conditions, fulfilling different security requirements. Particularly, countries with mountainous geography expose vehicles to aggressive variations in altitude and road grade. These variations affect the performance of the brake system. In order to study how these changes affect the brake system, two approaches were considered. The first approach was centered on the development of an analytical model for the longitudinal dynamics of the vehicle during braking maneuvers. This model was developed at system-level, considering the whole vehicle. This allowed the understanding of the relation between the braking force and the altitude and road grade, for different fixed deceleration requirement scenarios. The second approach was focused on the characterization of the vacuum servo operation.
Journal Article

Virtual Tire Data Influence on Vehicle Level Handling Performance

2015-04-14
2015-01-1570
This study presents the comparison of vehicle handling performance results obtained using physical test tire data and a tire model developed by means of Finite Element Method. Real tires have been measured in laboratory to obtain the tire force and moment curves in terms of lateral force and align torque as function of tire slip angle and vertical force. The same tire construction has been modeled with Finite Element Method and explicit formulation to generate the force and moment response curves. Pacejka Magic Formula tire response models were then created to represent these curves from both physical and virtual tires. In the sequence, these tire response models were integrated into a virtual multibody vehicle model developed to assess handling maneuvers.
Journal Article

Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern

2015-04-14
2015-01-1554
Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
Technical Paper

Development of Auxiliary Spring for Clutch Pedals

2014-09-30
2014-36-0139
The clutch pedal is one of the most used commands on vehicles and demands a robust project, good ergonomics and an adequate feeling. According to Shaver [3], a comfortable clutch pedal should have a load between 10 kgf and 13 kgf, but the total stroke, the maintenance of the load during the travel, peak load, etc. still has to be considered in the project. Basically the suggested curve for a comfortable clutch pedal starts with a progressive increase load until approximately ¼ of the stroke, and after a decreasing load until the pedal reaches its stroke limits. This effect can be produced through an auxiliary spring that ranges its force direction according to the position of the pedal. This article presents a methodology of modeling an auxiliary spring for clutch pedals and its installation geometry on the pedal box to achieve an adequate pedal feel. This theory is applied to semi-hydraulic and hydraulic systems clutches.
Journal Article

Estimation of Elemental Composition of Diesel Fuel Containing Biodiesel

2013-10-14
2013-01-2600
Carbon, hydrogen and oxygen are major elements in vehicle fuels. Knowledge of fuels elemental composition is helpful in addressing its performance characteristics. Carbon, hydrogen and oxygen composition is an important parameter in engine calibration affecting vehicle performance, emissions and fuel economy. Biodiesel, a fuel comprised of mono-alkyl esters of long-chain fatty acids also known as Fatty Acid Methyl Esters(FAME), derived from vegetable oils or animal fats, has become an important commercial marketplace automotive fuel in the United States (US) and around the world over last few years. FAME biodiesels have many chemical and physical property differences compared to conventional petroleum based diesel fuels. Also, the properties of biodiesel vary based on the feedstock chosen for biodiesel production. One of the key differences between petroleum diesel fuels and biodiesel is the oxygen content.
Technical Paper

Cycle Life Investigations on Different Li-Ion Cell Chemistries for PHEV Applications Based on Real Life Conditions

2012-04-16
2012-01-0656
Plug-In Hybrid Electric Vehicles (PHEV) are becoming increasingly important as an intermediate step on the roadmap to Battery Electric Vehicles (BEV). Li-Ion is the most important battery technology for future hybrid and electrical vehicles. Cycle life of batteries for automotive applications is a major concern of design and development on vehicles with electrified powertrain. Cell manufacturers present various cell chemistries based on Li-Ion technology. For choosing cells with the best cycle life performance appropriate test methods and criteria must be obtained. Cells must be stressed with accelerated aging methods, which correlate with real life conditions. There is always a conflict between high accelerating factors for fast results on the one hand and best accordance with reality on the other hand. Investigations are done on three different Li-Ion cell types which are applicable in the use of PHEVs.
Technical Paper

Test Center for Aging Analysis and Characterization of Lithium-Ion Batteries for Automotive Applications

2011-04-12
2011-01-1374
A test center for aging analysis and characterization of Lithium-Ion batteries for automotive applications is optimized by means of a dedicated cell tester. The new power tester offers high current magnitude with fast rise time in order to generate arbitrary charge and discharge waveforms, which are identical to real power net signals in vehicles. Upcoming hybrid and electrical cars show fast current transients due to the implemented power electronics like inverter or DC/DC converter. The various test procedures consider single and coupled effects from current profile, state of charge and temperature. They are simultaneously applied on several cells in order to derive statistical significance. Comprehensive safely functions on both the hardware and the software level ensure proper operation of the complex system.
X