Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Technical Paper

Temperature Effects on the Deformation and Fracture of a Quenched-and-Partitioned Steel

2013-04-08
2013-01-0610
Temperature effects on the deformation and fracture of a commercially produced transformation-induced plasticity (TRIP) steel subject to a two-step quenching and partitioning (Q&P) heat treatment are investigated. Strain field evolution at room temperature is quantified in this 980 MPa grade Q&P steel with a stereo digital image correlation (DIC) technique from quasi-static tensile tests of specimens with 0°, 45°, and 90° orientations. Baseline tensile properties along with the variation of the instantaneous hardening index with strain were computed. Variations of the bake-hardening index were explored under simulated paint bake conditions. Tensile properties were measured at selected temperatures between -100°C and 200°C and the TRIP effect was found to be temperature-dependent due to stress-induced martensitic transformation at lower temperatures versus strain-induced transformation at higher temperatures.
Journal Article

Structural Evaluation of an Experimental Aluminum/Magnesium Decklid

2011-04-12
2011-01-0075
Experimental decklids for the Cadillac STS sedan were made with Al AA5083 sheet outer panels and Mg AZ31B sheet inner panels using regular-production forming processes and hardware. Joining and coating processes were developed to accommodate the unique properties of Mg. Assembled decklids were evaluated for dimensional accuracy, slam durability, and impact response. The assemblies performed very well in these tests. Explicit and implicit finite element simulations of decklids were conducted, and showed that the Al/Mg decklids have good stiffness and strength characteristics. These results suggest the feasibility of using Mg sheet closure panels from a structural perspective.
Journal Article

Effects on Surface Roughness and Friction on Aluminum Sheet under Plain Strain Cyclic Bending and Tension

2011-04-12
2011-01-0535
During sheet metal forming, the friction and surface roughness change as the sheet slides, bends and stretches against the tools. This study assessed evolution of friction and surface roughness changes on aluminum sheet with two surface finish conditions, mill finish (MF) and electron discharge texture (EDT), in both the longitudinal and the transverse rolling directions of the sheet. The sheets were tested using a three pin Draw Bead Simulator (DBS). Surface roughness of the sheet evolved as a result of bending at the first shoulder, reverse bending at the middle pin, bending at the second shoulder and unbending at the exit. Stretching conditions and sheet-pin contact were also varied to see the impact on surface roughness. In general, the largest surface roughness change for the transverse direction was observed at the convex side of the exit shoulder pin and on the convex side of the first shoulder for the longitudinal direction.
Journal Article

The Effect of Surface Finish on Aluminum Sheet Friction Behavior

2011-04-12
2011-01-0534
Aluminum sheet is commercially available in three surface finishes, mill finish (MF), electric discharge texture (EDT), and dull finish (DF). This surface finish impacts the friction behavior during sheet metal forming. A study was done to compare ten commercially available sheet samples from several suppliers. The friction behavior was characterized in the longitudinal and transverse directions using a Draw Bead Simulator (DBS) test, resulting in a coefficient of friction (COF) value for each material. Characterization of the friction behavior in each direction provides useful data for formability analysis. To quantitatively characterize the surface finish, three-dimensional MicroTexture measurements were done with a WYKO NT8000 instrument. In general, the MF samples have the smoothest surface, with Sa values of 0.20-0.30 μm and the lowest COF values. The EDT samples have the roughest surface, with Sa values of 0.60-1.00 μm, and the highest COF values.
Technical Paper

Pressure Sensor Simulation Capability for Side Impact Sensing Calibration

2011-04-12
2011-01-0105
There is a growing interest in using pressure sensors to sense side impacts, where the pressure change inside the door cavity is monitored and used to discriminate trigger and non-trigger incidents. In this paper, a pressure sensor simulation capability for side impact sensing calibration is presented. The ability to use simulations for side impact sensing calibration early in the vehicle program development process could reduce vehicle development cost and time. It could also help in evaluating sensor locations by studying the effects of targeted impact points and contents in the door cavity. There are two modeling methods available in LS-DYNA for predicting pressure change inside a cavity, namely airbag method and fluid structure interaction method. A suite of side impact calibration events of a study vehicle were simulated using these two methods. The simulated door cavity pressure time histories were then extracted to calibrate the side sensing system of the study vehicle.
Technical Paper

Door Check Load Durability - Fatigue Life Prediction

2011-04-12
2011-01-0790
This paper describes an analytical methodology for predicting the fatigue life of a door system for check load durability cycles. A check stop load durability cycle occurs when a customer opens the door beyond the door detent position with a force applied on the check link or hinge check stops. This method combines Finite Element Analysis (FEA) model and fatigue code to compute the durability requirements. The FEA model consists of Door-in-White (DIW) on body with integrated hinge check link or independent check link. Nonlinear material, geometric and parts contact were considered for the door with body-in-white (BIW). Several door hinge designs, with integrated and independent check links, were investigated. Using the Von Mises stress and plastic strain from the above analysis, the fatigue life was predicted and compared with the test data. Integrating FEA and fatigue allows predicting the threshold total strain value, which is developed, for check load durability requirements.
Technical Paper

The Effect of Strain on Stainless Steel Surface Finish

2011-04-12
2011-01-0774
The bright surface finish of exterior automotive moldings made from stainless steel can become hazed and reflections distorted as a result of forming done during the manufacturing processes. Bright moldings are frequently used to give styling differentiation accents to vehicle exteriors. Stainless steel provides cost effective differentiation with a material that is durable and relatively easy to form to shapes desired by the stylist. Because of the desirable attributes of stainless steel, an understanding of the threshold of unacceptable surface appearance is necessary to maximize showroom appeal and avoid customer complaints that result in warranty claims. This paper quantifies the effect that manufacturing strain and strain rate have on the surface finish of 436M2 stainless steel. Controlled experiments were conducted on production grade stainless steel strips subjected to a variety of strain and strain rates typical of manufacturing processes.
X