Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Exploring methanol and naphtha as alternative fuels for a hybrid-ICE battery-driven light-duty vehicle

2024-06-12
2024-37-0021
In pursuing sustainable automotive technologies, exploring alternative fuels for hybrid vehicles is crucial in reducing environmental impact and aligning with global carbon emission reduction goals. This work compares methanol and naphtha as potential suitable alternative fuels for running in a battery-driven light-duty hybrid vehicle by comparing their performance with the diesel baseline engine. This work employs a 0-D vehicle simulation model within the GT-Power suite to replicate vehicle dynamics under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The vehicle choice enables the assessment of a delivery application scenario using distinct payload capacities: 0%, 25%, 50%, and 100%. The model is fed with engine maps derived from previous experimental work conducted in the same engine, in which a full calibration was obtained that ensures the engine's operability in a wide region of rotational speed and loads.
Technical Paper

Influence of Intake Charge Temperature and EGR Rate on the Combustion and Emission Characteristics of Ammonia/Diesel Dual-Fuel Engine

2024-06-12
2024-37-0025
Ammonia has emerged as a promising carbon-free alternative fuel for internal combustion engines (ICE), particularly in large-bore engine applications. However, integrating ammonia into conventional engines presents challenges, prompting the exploration of innovative combustion strategies like dual-fuel combustion. Nitrous oxide (N2O) emissions have emerged as a significant obstacle to the widespread adoption of ammonia in ICE. Various studies suggest that combining exhaust gas recirculation (EGR) with adjustments in inlet temperature and diesel injection timing can effectively mitigate nitrogen oxides (NOx) emissions across diverse operating conditions in dual-fuel diesel engines.
Technical Paper

Numerical Approach for the Characterization of the Venting Process of Cylindrical Cells under Thermal Runaway Conditions

2024-05-06
2024-01-2900
Increasing awareness of the harmful effects on the environment of traditional Internal Combustion Engines (ICE) drives the industry toward cleaner powertrain technologies such as battery-driven Electric Vehicles (EV). Nonetheless, the high energy density of Li-Ion batteries can cause strong exothermic reactions under certain conditions that can lead to catastrophic results, called Thermal Runaway (TR). Hence, a strong effort is being made to understand this phenomenon and increase battery safety. Specifically, the vented gases and their ignition can cause the propagation of this phenomenon to adjacent batteries in a pack. In this work, Computational Fluid Dynamics (CFD) is employed to predict this venting process in an LG18650 cylindrical battery. The shape of the venting cap deformation obtained from experimental results was introduced in the computational model.
Technical Paper

Powering Tomorrow's Light, Medium, and Heavy-Duty Vehicles: A Comprehensive Techno-Economic Examination of Emerging Powertrain Technologies

2024-04-09
2024-01-2446
This paper presents a comprehensive analysis of emerging powertrain technologies for a wide spectrum of vehicles, ranging from light-duty passenger vehicles to medium and heavy-duty trucks. The study focuses on the anticipated evolution of these technologies over the coming decades, assessing their potential benefits and impact on sustainability. The analysis encompasses simulations across a wide range of vehicle classes, including compact, midsize, small SUVs, midsize SUVs, and pickups, as well as various truck types, such as class 4 step vans, class 6 box trucks, and class 8 regional and long-haul trucks. It evaluates key performance metrics, including fuel consumption, estimated purchase price, and total cost of ownership, for these vehicles equipped with advanced powertrain technologies such as mild hybrid, full hybrid, plug-in hybrid, battery electric, and fuel cell powertrains.
Technical Paper

Toy Model: A Naïve ML Approach to Hydrogen Combustion Anomalies

2024-04-09
2024-01-2608
Predicting and preventing combustion anomalies leads to safe and efficient operation of the hydrogen internal combustion engine. This research presents the application of three machine learning (ML) models – K-Nearest Neighbors (KNN), Random Forest (RF) and Logistic Regression (LR) – for the prediction of combustion anomalies in a hydrogen internal combustion engine. A small experimental dataset was used to train the models and posterior experiments were used to evaluate their performance and predicting capabilities (both in operating points -speed and load- within the training dataset and operating points in other areas of the engine map). KNN and RF exhibit superior accuracy in classifying combustion anomalies in the training and testing data, particularly in minimizing false negatives, which could have detrimental effects on the engine.
Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Modeling Pre-Chamber Assisted Efficient Combustion in an Argon Power Cycle Engine

2024-04-09
2024-01-2690
The Argon Power Cycle (APC) is a novel zero-emission closed-loop argon recirculating engine cycle which has been developed by Noble Thermodynamics Systems, Inc. It provides a significant gain in indicated thermal efficiency of the reciprocating engine by breathing oxygen and argon rather than air. The use of argon, a monatomic gas, greatly increases the specific heat ratio of the working fluid, resulting in a significantly higher ideal Otto cycle efficiency. This technology delivers a substantial improvement in reciprocating engine performance, maximizing the energy conversion of fuel into useful work. Combined Heat and Power (CHP) operating under the APC represents a promising solution to realize a net-zero-carbon future, providing the thermal energy that hard-to-electrify manufacturing processes need while at the same time delivering clean, dispatchable, and efficient power.
Technical Paper

Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine

2024-04-09
2024-01-2694
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms.
Technical Paper

Comprehensive Cradle to Grave Life Cycle Analysis of On-Road Vehicles in the United States Based on GREET

2024-04-09
2024-01-2830
To properly compare and contrast the environmental performance of one vehicle technology against another, it is necessary to consider their production, operation, and end-of-life fates. Since 1995, Argonne’s GREET® life cycle analysis model (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) has been annually updated to model and refine the latest developments in fuels and materials production, as well as vehicle operational and composition characteristics. Updated cradle-to-grave life cycle analysis results from the model’s latest release are described for a wide variety of fuel and powertrain options for U.S. light-duty and medium/heavy-duty vehicles. Light-duty vehicles include a passenger car, sports utility vehicle (SUV), and pick-up truck, while medium/heavy-duty vehicles include a Class 6 pickup-and-delivery truck, Class 8 day-cab (regional) truck, and Class 8 sleeper-cab (long-haul) truck.
Technical Paper

Residual Gas Fraction Measurement and Estimation of the CFR Octane Rating Engine Operating Under HCCI Conditions

2023-09-29
2023-32-0010
The autoignition chemistry of fuels depends on the pressure, temperature, and time history that the fuel-air mixture experiences during the compression stroke. While piezoelectric pressure transducers offer excellent means of pressure measurement, temperature measurements are not commonly available and must be estimated. Even if the pressure and temperature at the intake and exhaust ports are measured, the residual gas fraction (RGF) within the combustion chamber requires estimation and greatly impacts the temperature of the fresh charge at intake valve closing. This work replaced the standard D1 Detonation Pickup of a CFR engine with a rapid sampling valve to allow for in-cylinder gas sampling at defined crank-angle times during the compression stroke. The extracted cylinder contents were captured in an emissions sample bag and its composition was subsequently analyzed in an AVL i60 emissions bench.
Technical Paper

Methanol Evaporation in an Engine Intake Runner under Various Conditions

2023-08-28
2023-24-0018
Methanol has recently emerged as a promising fuel for internal combustion engines due to its multiple carbon-neutral production routes and advantageous properties when combusting. Methanol is intrinsically more suitable for spark-ignition (SI) operation thanks to its high octane number, but its potential in heavy-duty applications also encourages engine manufacturers in this field to retrofit their existing compression-ignition products into methanol/diesel dual-fuel (DF) operation. For both SI operation and DF operation, injecting methanol into the engine’s intake path at low pressure is a relatively simple and robust method to introduce methanol into the cylinders. However, the much higher heat of vaporization (HoV) of methanol compared to conventional SI fuels like gasoline can be a double-edged sword.
Technical Paper

CFD Modelling of Hydrogen-Fueled SI Engines for Light-Duty Applications

2023-08-28
2023-24-0017
The employment of hydrogen as energy carrier for transportation sector represents a significant challenge for powertrains. Spark-ignition (SI) engines are feasible and low-cost devices to convert the hydrogen chemical energy into mechanical work. However, significant efforts are needed to successfully retrofit the available configurations. The computational fluid dynamics (CFD) modelling represents a useful tool to support experiments, clarifying the impact of the engine characteristics on both the mixture preparation and the combustion development. In this work, a CFD investigation is carried out on typical light-duty SI engine configurations, exploring the two main strategies of hydrogen addition: port fuel injection (PFI) and direct injection (DI). The purpose is to assess the behaviour of widely-used numerical models and methodologies when hydrogen is employed instead of traditional carbon-based fuels.
Technical Paper

Effect of Intake Conditions (Temperature, Pressure and EGR) on the Operation of a Dual-Fuel Marine Engine with Methanol

2023-08-28
2023-24-0046
In the upcoming decade sustainable powertrain technologies will seek for market entrance in the transport sector. One promising solution is the utilization of dual-fuel engines using renewable methanol ignited by a pilot diesel fuel. This approach allows the displacement of a significant portion of fossil diesel, thereby reducing greenhouse gas emissions. Additionally, this technology is, next to newbuilds, suited for retrofitting existing engines, while maintaining high efficiencies and lowering engine-out emissions. Various researchers have experimentally tested the effects of replacing diesel by methanol and have reported different boundaries for substituting diesel by methanol, including misfire, partial burn, knock and pre-ignition. However, little research has been conducted to explore ways to extend these substitution limits.
Technical Paper

Numerical Modeling of Hydrogen Combustion Using Preferential Species Diffusion, Detailed Chemistry and Adaptive Mesh Refinement in Internal Combustion Engines

2023-08-28
2023-24-0062
Mitigating human-made climate change means cutting greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which causes climate change. One approach to achieving this is to move to a carbon-free economy where carbon emissions are offset by carbon removal or sequestration. Transportation is a significant contributor to CO2 emissions, so finding renewable alternatives to fossil fuels is crucial. Green hydrogen-fueled engines can reduce the carbon footprint of transportation and help achieve a carbon-free economy. However, hydrogen combustion is challenging in an internal combustion engine due to flame instabilities, pre-ignition, and backfire. Numerical modeling of hydrogen combustion is necessary to optimize engine performance and reduce emissions. In this work, a numerical methodology is proposed to model lean hydrogen combustion in a turbocharged port fuel injection (PFI) spark-ignition (SI) engine for automotive applications.
Technical Paper

Numerical Investigation of the Ignition Delay and Laminar Flame Speed for Pilot-Ignited Dual Fuel Engine Operation with Hydrogen or Methanol

2023-08-28
2023-24-0011
The use of renewable fuels such as hydrogen and methanol in marine engines is a promising way to reduce greenhouse gas emissions from maritime transport. Hydrogen and methanol can be used as the main fuel in dual-fuel engines. However, the co-combustion of hydrogen-diesel and methanol-diesel needs to be carefully studied. In the present work, the ignition delay (ID) and laminar burning velocity (LBV) for pilot-ignited dual fuel engine operation with hydrogen or methanol are studied. A constant volume batch reactor numerical setup is used in the open source Cantera code to calculate the effect of the premixed fuel on the ID of the pilot fuel. Also, Cantera is used to simulate a freely-propagating, adiabatic, 1-D flame to estimate the laminar flame speed of either hydrogen or methanol and how it is affected by the presence of pilot fuel. First, suitable chemical kinetic schemes are selected based on experimental data collected from the literature.
Technical Paper

Development and Evaluation of the Predictive Capabilities of a Dual-Fuel Combustion Model with Methanol or Hydrogen in a Medium Speed Large Bore Engine

2023-08-28
2023-24-0008
To mitigate climate change, it is essential that sustainable technologies emerge in the transport industry. One viable solution is the use of methanol or hydrogen combined with internal combustion engines (ICEs). The dual-fuel technology in particular, in which a diesel pilot ignites port fuel injected methanol or hydrogen, is of great interest to transition from diesel engines to ICEs using purely these fuels. This approach allows for a significant portion of fossil diesel to be replaced with sustainable methanol or hydrogen, while maintaining high efficiencies and the possibility to run solely on diesel if required. Additionally, lower engine-out pollutant emissions (NOx, soot) are produced. Although multiple experimental research results are available, numerical literature on both fuels in dual-fuel mode is scarce. Therefore, this study aims to develop a multi-zone dual-fuel combustion model for engine simulations.
Technical Paper

ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline

2023-08-28
2023-24-0089
Using renewable fuels is a reliable approach for decarbonization of combustion engines. iso-Butanol and n-butanol are known as longer chain alcohols and have the potential of being used as gasoline substitute or a renewable fraction of gasoline. The combustion behavior of renewable fuels in modern combustion engines and advanced combustion concepts is not well understood yet. Low-temperature combustion (LTC) is a concept that is a basis for some of the low emissions-high efficiency combustion technologies. Fuel ɸ-sensitivity is known as a key factor to be considered for tailoring fuels for these engines. The Lund ɸ-sensitivity method is an empirical test method for evaluation of the ɸ-sensitivity of liquid fuels and evaluate fuel behavior in thermal. iso-Butanol and n-butanol are two alcohols which like other alcohol exhibit nonlinear behavior when blended with (surrogate) gasoline in terms of RON and MON.
Technical Paper

Evaluation of Neat Methanol as Fuel for a Light-Duty Compression Ignition Engine

2023-08-28
2023-24-0047
Methanol is currently being evaluated as a promising alternative fuel for internal combustion engines, due to being attainable by carbon neutral or negative pathways (renewable energy and carbon capture technology). The low ignitability of methanol has made it attractive mostly as a fuel for spark ignition engines, however the low sooting properties of the fuel could potentially reduce the NOx-soot tradeoff present in compression ignition engines. In this work, using a 4-cylinder engine with compression ratio modified from 16:1 to 19:1, methanol combustion is evaluated under five operating conditions in terms of fuel consumption, criteria pollutants, CO2 emissions and engine efficiency in addition to the qualitative assessment of the combustion stability. It was found that combustion is stable at medium to high loads, with medium load NOx emissions levels at least 30% lower than the original diesel engine and comparable emissions at maximum load conditions.
Technical Paper

Renewable Alternatives for Fossil Fuels in Non-Road Mobile Machinery: A Multicriteria Analysis

2023-08-28
2023-24-0086
Non-Road Mobile Machinery (NRMM) incorporates a wide variety of machines not intended for the transport of passengers or goods on the road. This includes small gardening equipment, construction, mining, agricultural, and forestry machinery up to locomotives and inland waterway vessels, mostly using an internal combustion engine. NRMM was often overlooked and neglected in the past when considering pollutant and greenhouse gas emissions. Due to their high diversity, they are hard to categorize, resulting in a lack of available data. As emissions from road transport are being tackled by regulations, the emissions of NRMM become an increasing part of total transport emissions. An alternative to fossil fuels will be required for the energy supply of NRMM to fully commit to the CO2 reduction goals, and to fulfil the future requirements of legislators and public opinion.
Technical Paper

Thermal Model for the analysis of the Thermal Runaway in Lithium-Ion Batteries using Accelerating Rate Calorimetry

2023-08-28
2023-24-0162
Accelerating rate calorimetry (ARC) has emerged as a powerful tool for evaluating the thermal behavior of Li-ion cells and identifying potential safety hazards. In this work, a new physical thermal model has been developed based on the first law of thermodynamics for analyzing heat and mass generated by Lithium-ion battery cells under thermal abuse conditions during EV-ARC tests. The analysis is based on the experimental data gathered from an ARC, including different temperatures and pressure inside a gas-tight canister located in the calorimeter chamber, as well as the gas composition at the end of the test. The energy balance of the battery cell includes: the energy released by the cell, the internal energy of the elements inside the canister, heat transfer between elements inside the canister, as well as the mass transfer between the cell and the gases inside the canister.
X