Refine Your Search

Topic

Author

Search Results

Technical Paper

Evaluation and Analysis of Hydrogen Embrittlement Characteristics of Various Steel Materials

2023-09-29
2023-32-0136
Austenitic stainless JIS SUS316L (16Cr–12Ni–2Mo) steel equivalent material that offers excellent hydrogen embrittlement resistance is used for the high pressure hydrogen pathways in FCEVs. However, there is a need to switch to less expensive material. This paper proposes a technique to evaluate hydrogen embrittlement simulated in high-pressure hydrogen environments based on the use of cathode charging and slow strain rate testing (SSRT) at atmospheric pressure, while also providing an analysis of the hydrogen embrittlement mechanism. At the same time, it presents an evaluation of hydrogen embrittlement resistance of ferrite material, a candidate low-cost material.
Technical Paper

Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

2020-04-14
2020-01-0828
Understanding and prediction of flash-boiling spray behavior in gasoline direct-injection (GDI) engines remains a challenge. In this study, computational fluid dynamics (CFD) simulations using the homogeneous relaxation model (HRM) for not only internal nozzle flow but also external spray were evaluated using CONVERGE software and compared to experimental data. High-speed extinction imaging experiments were carried out in a real-size axial-hole transparent nozzle installed at the tip of machined GDI injector fueled with n-pentane under various ambient pressure conditions (Pa/Ps = 0.07 - 1.39). The width of the spray during injection was assessed by means of projected liquid volume, but the structure and timing for boil-off of liquid within the sac of the injector were also assessed after the end of injection, including cases with different designed sac volumes.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Development of Next Generation Gear Oil for Heavy Duty Vehicles

2017-03-28
2017-01-0890
Heavy duty vehicles take a large role in providing global logistics. It is required to have both high durability and reduced CO2 from the viewpoint of global environment conservation. Therefore lubricating oils for transmission and axle/differential gear box are required to have excellent protection and longer drain intervals. However, it is also necessary that the gear oil maintain suitable friction performance for the synchronizers of the transmission. Even with such good performance, both transmission and axle/differential gear box lubricants must balance cost and performance, in particular in the Asian market. The development of gear oil additives for high reliability gear oil must consider the available base oils in various regions as the additive is a global product. In many cases general long drain gear oils for heavy duty vehicles use the group III or IV base oils, but it is desirable to use the group I/II base oils in terms of cost and availability.
Technical Paper

Application of Set-Based Design Method to Ride Comfort Design with a Large Number of Design Parameters

2014-04-01
2014-01-0881
Design work for truck suspension systems requires multi-objective optimization using a large number of parameters that cannot be solved in a simple way. This paper proposes a process-based systematization concept for ride comfort design using a set-based design method. A truck was modeled with a minimum of 13 degrees of freedom, and suspension performance under various vehicle speeds, road surface conditions, and load amounts was calculated. The range of design parameters for the suspension, the range of performance requirements, and the optimal values within these ranges were defined based on the knowledge and know-how of experienced design engineers. The final design of the suspension was installed in a prototype truck and evaluated. The performance of the truck satisfied all the objectives and the effectiveness of the set-based design approach was confirmed.
Technical Paper

Investigation of Thermal Fatigue Evaluation Method for Cast Iron

2013-04-08
2013-01-0393
We have developed a new test method in which temperature of cavity lip of a piston alone during engine rotation is reproduced, cavity lip strain is measured. As the results of strain measurement using the test method in a condition that simulates of conventional engines, a strain behavior was out-of-phase. And in a condition that simulates of high-load engines in future, strain behavior was clockwise-diamond cycle. It was found from the result of the test method developed that strain increased on the cavity lip. The fatigue life of the cavity lip was evaluated using the strain measured and isothermal fatigue curves which obtained by the strain controlled isothermal fatigue test. The result of engine durability test has revealed that the developed method was valid for thermal fatigue evaluation of the cavity lip.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Journal Article

Development of a Fuel Economy and Exhaust Emissions Test Method with HILS for Heavy-Duty HEVs

2008-04-14
2008-01-1318
The objective of this study was to develop a test method for heavy-duty HEVs using a hardware-in-the-loop simulator (HILS) to enhance the type-approval-test method. To achieve our objective, HILS systems for series and parallel HEVs were actually constructed to verify calculation accuracy. Comparison of calculated and measured data (vehicle speed, motor/generator power, rechargeable energy storage system power/voltage/current/state of charge, and fuel economy) revealed them to be in good agreement. Calculation error for fuel economy was less than 2%.
Technical Paper

Advanced Safety Technologies for Large Trucks

2007-08-05
2007-01-3589
Large truck accidents sometimes result in severe damages or give large disturbance of traffic and there are demands of improving vehicle safety characteristics. Main types of traffic accidents concerned are rear-end collision and single accident. As countermeasures for rear-end collisions, world-first collision mitigation brake for commercial vehicles; Pre-crash Safety System, was developed. If there is possibility of collision, warning to driver and brake control intervention is carried out in stepwise fashion and collision speed is decreased. To achieve higher effect in collision mitigation, it is necessary to activate warning or brake-force in earlier timing. Inter-vehicle or infrastructure-vehicle communication offer promising prospect. Tractor-trailer combinations show some instable behaviors. “Roll Stability Assist” and “Vehicle Stability Control” were developed to assist drivers to avoid the occurrence of these instable behaviors.
Technical Paper

The IP Filter, a DOC-Integrated DPF, for an Advanced PM Aftertreatment System (2): An Evaluation of Fundamental Performance

2007-04-16
2007-01-0654
DPR consists of a multiple fuel-injection system, an electronic engine control unit, and a DPR Cleaner. The DPR cleaner is one assembly unit consisting of a DOC, a catalyzed DPF, and an exhaust silencer. Thus, DPR is a system developed to achieve healthy operation of a DPF with active regeneration regardless of engine operating conditions. The IP Filter was developed to improve the DPR cleaner by reducing the size of the unit and shortening the regeneration time. Both the DOC and DPF are integrated into one unit structure. The IP Filter has open-ended cells on the front face unlike a conventional wall-flow DPF. Instead, the plugs are positioned at the interface between the DOC and DPF. On the rear face of the IP Filter, plugs are installed at the same positions as those of a conventional DPF. The DOC substrate of the IP Filter is made of highly porous, straight honeycomb, the same as that of DPF.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 4th Report: The Measurement of Oil Pressure Under the Piston Oil Ring -

2006-10-16
2006-01-3440
Clarifying the mechanism of the oil consumption of engines is necessary for developing its estimation method. Oil moves upwards on the piston to the combustion chamber through ring sliding surfaces, ring backs and ring gaps. The mechanisms of oil upwards transport through the ring gaps are hardly analyzed. In this report, oil pressure just under the oil ring was successfully measured by newly developed method to clarify the oil transport mechanism at the ring gap. It was showed that the generated oil pressure pushed up the oil at the ring gap.
Technical Paper

Study of 2-LEG NOx Storage-Reduction Catalyst System for HD Diesel Engine

2006-04-03
2006-01-0211
A 2-LEG NOx Storage-Reduction (NSR) catalyst system is one of potential after-treatment technology to meet stringent NOx and PM emissions standards as Post New Long Term (Japanese 2009 regulation) and US'10. Concerning NOx reduction using NSR catalyst, a secondary fuel injection is necessary to make fuel-rich exhaust condition during the NOx reduction, and causes its fuel penalty. Since fuel injected in the high-temperature (∼250 degrees Celsius) exhaust instantly reacts with oxygen in common diesel exhaust, the proportion of fuel consumption to reduce the NOx stored on NSR catalyst is relatively small. A 2-LEG NSR catalyst system has the decreasing exhaust flow mechanism during NOx reduction, and the potential to improve the NOx reduction and fuel penalty. Therefore, this paper studies the 2-LEG NSR catalyst system. The after-treatment system consists of NSR catalysts, a secondary fuel injection system, flow controlled valves and a Catalyzed Diesel Particulate Filter (CDPF).
Technical Paper

Hino's Advanced Low-Emission Technologies Developed to Meet Stringent Emissions Standards

2006-04-03
2006-01-0275
Japan's new 2005 long-term emissions regulation was implemented in October 2005. Both NOx and PM emissions standards were reduced to 2 g/kWh and 0.027 g/kWh, which were 40 and 85 percent lower than the 2003 new short-term emissions standards, respectively. These emissions standards are as stringent as the Euro5 standards that are scheduled for implementation in 2008. In addition, the transient-cycle test procedure for emissions compliance, labeled JE05, was introduced to replace the D13-mode steady-state test procedure. This paper describes exhaust emissions reduction technologies developed for Hino's 13-liter heavy-duty diesel engine so that it meets the above standards. A production catalyzed wall-flow DPF was employed to reduce PM emissions in both mass and small particles. NOx emissions were reduced by improving combustion with cooled EGR and without use of a NOx aftertreatment device.
Technical Paper

R&D and Analysis of Energy Consumption Improvement Factor for Advanced Clean Energy HEVs

2005-10-24
2005-01-3828
Ultra-low energy consumption and ultra-low emission vehicle technologies have been developed by combining petroleum-alternative clean energy with a hybrid electric vehicle (HEV) system. Their component technologies cover a wide range of vehicle types, such as passenger cars, delivery trucks, and city buses, adsorbed natural gas (ANG), compressed natural gas (CNG), and dimethyl ether (DME) as fuels, series (S-HEV) and series/parallel (SP-HEV) for hybrid types, and as energy storage systems (ESSs), flywheel batteries (FWBs), capacitors, and lithium-ion (Li-ion) batteries. Evaluation tests confirmed that the energy consumption of the developed vehicles is 1/2 of that of conventional diesel vehicles, and the exhaust emission levels are comparable to Japan's ultra-low emission vehicle (J-ULEV) level.
Technical Paper

Integrated Internal EGR and Compression Braking System for Hino's E13C Engine

2004-03-08
2004-01-1313
An integrated engine subsystem incorporating Internal Exhaust Gas Recirculation (IEGR) or alternatively referred to as Pulse EGR™ and Compression Release Retarding (CRR) functions has been developed and introduced to production with the new E13C engine from Hino Motors Ltd. This new system provides the nitrous oxide (NOX) reduction benefit of IEGR and the vehicle control and brake saving benefits of CRR in a single integrated package, without the need for increased vehicle cooling capacity or additional components external to the engine. The product is a result of a close cooperation between two companies, Hino Motors Ltd. of Japan and Jacobs Vehicle Systems, Inc. of the U.S.A.
Technical Paper

Noise Generating Mechanism at Idling for a Four-cylinder In-line Diesel Engine

2003-05-05
2003-01-1720
The separation of combustion noise and mechanical noise from the total noise of a four-cylinder in-line diesel engine at idling was carried out with high accuracy by changing the fuel injection timing. The mechanical noise, which accounts for the major share at 93%, was then separated into noises from the typical mechanical causes, and the valve train was found to be the major noise source. From analysis of the noise generating mechanism for the valve train, it was clarified that the noise was caused mainly by the gear rattling owing to the variation in the camshaft drive torque.
Technical Paper

Advances of Hino J-series Diesel Engines

2003-03-03
2003-01-0054
Approximately 200,000 units of Hino J-series diesel engine were produced for 7 years. The J-series engines had a reputation all over the world for their performance, reliability, lightweight, and installation ability. They are composed of 4, 6 cylinders engines and unique 5-cylinder engine J07C. In 2002, newly modified J-series engines, which met the Japan 2001 noise emission regulations, were developed and J07C-TI, 5-cylinder TI engine, equipped with a common-rail fuel injection system was added in the J-series. Common-rail fuel injection system was equipped in order to achieve the emission targets in the future as well as to meet the current emission regulations. Achieving higher injection pressure level through the all engine speed, include excess low speed, was effective in reduction of PM emissions and in increasing of low engine speed torque drastically.
Technical Paper

Performance Improvement of On-Center Regulation for Large Sized Vehicles

2000-12-04
2000-01-3433
The toe-change of road-wheel, so-called compliance-steer(CS), caused by suspension compliance is proved to occur around a steady instantaneous center under steady run at constant speed. The adverse/proverse CS, that increases/decreases the side-slip angle versus the velocity vector of vehicle, is realized by locating the center rearward/forward of the axle. By designing the front/rear wheel CS as a proverse/adverse CS with nonlinear compliance that is large at on-center but small at off-center, vehicle characteristics to reduce lateral deviation caused by disturbance and to improve tracking performance are possible.
Technical Paper

Development of “Camion” Truck Winner at '97 Dakar Rally

1998-11-16
983065
In the '97 Dakar Rally, Hino FT model, 8,000cc engine truck, won 1st, 2nd and 3rd places by defeating upper class trucks having engine of 19,000cc. The average speed of the '97 Hino model was increased more than 15 km/h over the '96 model by improving the riding comfort and handling stability. Larger diameter tires, and softer parabolic leaf springs with long and inclined axle-locus for reducing road impact, gas charged dampers, suspension rods which control compliance-steer-motion and wind-up motion of unsprung masses were adopted for the '97 model.
Technical Paper

Combustion Optimization by Means of Common Rail Injection System for Heavy-Duty Diesel Engines

1998-10-19
982679
This paper describes the combustion optimizations of heavy-duty diesel engines for the anticipated future emissions regulations by means of an electronically controlled common rail injection system. Tests were conducted on a turbocharged and aftercooled (TCA) prototype heavy-duty diesel engine. To improve both NOx-fuel consumption and NOx-PM trade-offs, fuel injection characteristics including injection timing, injection pressure, pilot injection quantity, and injection interval on emissions and engine performances were explored. Then intake swirl ratio and combustion chamber geometry were modified to optimize air-fuel mixing and to emphasize the pilot injection effects. Finally, for further NOx reductions, the potentials of the combined use of EGR and pilot injection were experimentally examined. The results showed that the NOx-fuel consumption trade-off is improved by an optimum swirl ratio and combustion chamber geometry as well as by a new pilot concept.
X