Refine Your Search

Topic

Author

Search Results

Technical Paper

Proposal for Relaxation of Airspace Restrictions Based on Flight-Continuation Possibility of UAVs in Event of Failure

2024-03-05
2024-01-1912
The flight area of drones and other unmanned aerial vehicles (UAVs) had been highly restricted but has been relaxing, including flights beyond the scope of sight. Deregulation without aircraft-reliability improvement increases the risk of accidents. However, demanding high reliability for all aircraft leads to an increase in the price of the aircraft. Therefore, if airspace restrictions are relaxed for more reliable aircraft, the cost of higher reliability and its benefits can be balanced. This will improve efficiency and optimize cost-effectiveness. The purpose of this proposal is to balance the cost of aircraft-reliability improvement (which allows flight to continue in the event of a failure) and its advantages. Specifically, the author proposes rules that apply more relaxed airspace restrictions to UAVs with higher FCLs (Flight Continuity Possibility Levels) and stricter airspace restrictions to those with lower FCLs.
Technical Paper

Development of Flexible System for Demand and Supply Imbalance considering Battery Life

2023-09-29
2023-32-0111
We developed a flexible system with EVs for solving imbalance between electricity demand and supply avoiding degradation of EV’s battery life. Such flexible systems are commonly being examined but nothing the system which uses battery considering impact of its battery life to avoid shorten EV’s operation period. Therefore, we developed one of methodologies to select preferable load facilities based on imbalance trend and flexible prices. The imbalance trend means a duration of the imbalance. The flexible prices mean operation cost to provide flexibility. By comparing the flexible prices and operation profit, it is possible to prevent unnecessary operation. As a result, we demonstrated our flexible system works as designed based on these parameters.
Technical Paper

Development of High Frequency Response Battery and Enhancement of Power Density for Inverter

2021-04-06
2021-01-0753
We propose low inductance batteries and enhance power density for a inverter. Conventionally, the capacitors are used for smoothing ripple of the inverter. The low inductance battery which responds at carrier frequency of inverter can reduce the capacity of the smoothing capacitors and enable to enhance power density for the inverter. For reducing the inductance, it is necessary to separately understand the impact of electrochemical reaction under wide range of assumed conditions and structural reaction on frequency characteristics. Furthermore, it is also necessary to design the low inductance batteries based on combining the both of characteristics. However, there are no study focusing on modeling by combining such different domains. Therefore, we made original inductance model inside battery considering frequency characteristics among all materials and structural influence with electromagnetic field analysis simulator.
Technical Paper

Development of a Combined Battery System for Electric Vehicles with Battery Lifespan Enhancements

2018-04-03
2018-01-0448
We propose a combined battery system (CBS) for low cost electric vehicles (EVs) to enhance battery life. The EVs popularly called as Neighborhood Electric Vehicle or Low-Speed-Electric-Vehicle are spreading in developing countries. Conventionally the EVs batteries consist of high energy density cells, and we call it as energy cells (EC). A major issue with the EVs is high operational costs mainly due to high battery cost and short lifespan of the ECs. In this study, we develop a CBS consisting of a combination of following two kinds of batteries: i) EC which is the main energy source for the EV, and ii) a battery having high power density also called as power cells (PC) which is more suitable to bear high charge-discharge currents. The key feature of the proposed system is to minimize the size of additional battery by using our high power lithium ion battery. We performed experiments to estimate EC life for several capacity values of the PC.
Technical Paper

Improvement of Semi-Active Suspension System Ride Performance Based on Bi-Linear Optimal Control Using Height Sensors

2018-04-03
2018-01-0690
Semi-active suspension systems have traditionally used accelerometers mounted on the wheel and body to sense vehicle motion. However, the cost and weight of these sensors and their associated bracketry and wiring must be considered when deciding to adopt a semi-active suspension system on a particular vehicle. In previous report [1], Authors have described a Bi-Linear Optimal control algorithm [2] by which sprung mass motion is estimated using height sensor signals and a Kalman filter. Such an algorithm would eliminate the need for additional accelerometers and their associated hardware, resulting in a cheaper and lighter system. In this report, the Authors propose a method of improved ride comfort and reducing tuning time of this algorithm by improving the sprung mass motion estimation method.
Technical Paper

Evaluation of Hitachi Electric Vehicle Combined Battery System Lifespan in India

2018-04-03
2018-01-0447
We have developed a drive cycle (DC) to test Hitachi’s combined battery system (CBS) for electric vehicles (EVs) having battery lifespan enhancements. Conventionally EV batteries consist of high energy density cells, and we call them as energy cells (EC). A major issue with the EVs is high operational costs mainly due to short lifespan of the ECs. CBS almost doubles the EC and thus overall battery system lifespan, as per the evaluation over a WLTP based method. We want to test the CBS under Indian conditions which has predominantly hot weather, and traffic jam scenarios. Battery deterioration and thus its lifespan is sensitive to traffic conditions and ambient temperature. Hence, it was needed to evaluate the CBS over an Indian DC and use 40°C as ambient temperature. However, it was difficult to carry out the tests since there is no standard Indian DC for small / light weight four wheelers.
Technical Paper

Virtual FMEA and Its Application to Software Verification of Electric Power Steering System

2017-03-28
2017-01-0066
This paper presents the “Virtual Failure Mode and Effects Analysis (vFMEA)” system, which is a high-fidelity electrical-failure-simulation platform, and applies it to the software verification of an electric power steering (EPS) system. The vFMEA system enables engineers to dynamically inject a drift fault into a circuit model of the electronic control unit (ECU) of an EPS system, to analyze system-level failure effects, and to verify software-implemented safety mechanisms, which consequently reduces both cost and time of development. The vFMEA system can verify test cases that cannot be verified using an actual ECU and can improve test coverage as well. It consists of a cycle-accurate microcontroller model with mass-production software implemented in binary format, analog and digital circuit models, mechanical models, and a state-triggered fault-injection mechanism.
Journal Article

Multi-Fidelity Total Integrated Simulation Technology for High Pressure Pump with Squeeze Film Effect

2017-03-28
2017-01-1325
Automotive fuel can be efficiently combusted by injecting it into the cylinders at high pressure to atomize it to pass the regulations for exhaust gas and fuel economy. For this reason, automotive companies have developed direct injection engines, which can inject gasoline into the cylinders directly. Furthermore, the demand for lower-noise high pressure pumps is also increasing from the viewpoint of automotive comfort. Since the valve velocity and noise level will increase as the pressure in fuel pumps increases, noise problems need to be solved under the high pressure conditions. Accordingly, the valve motion should be predicted with high accuracy under operating conditions to evaluate the noise caused by valve impingement. In addition, the squeeze film effect phenomenon will occur in the physical fuel pumps affect the prediction of the noise level caused by valve impingement.
Technical Paper

Numerical Study of Internal Combustion Engine using OpenFOAM®

2016-04-05
2016-01-1346
We developed the numerical simulation tool by using OpenFOAM® and in-house simulation codes for Gasoline Direct Injection (GDI) engine in order to carry out the precise investigation of the throughout process from the internal nozzle flow to the fuel/air mixture in engines. For the piston/valve motions, a mapping approach is employed and implemented in this study. In the meantime, the spray atomization including the liquid-columnbreakup region and the secondary-breakup region are simulated by combining the different numerical approaches applied to each region. By connecting the result of liquid-column-breakup simulation to the secondary-breakup simulation, the regions which have different physical phenomena with different length scales are seamlessly jointed; i.e., the velocity and position of droplets predicted by the liquid-column-breakup simulation is used in the secondary breakup simulation so that the initial velocity and position of droplets are transferred.
Technical Paper

Development of High-resolution Exciting Source Identification System

2016-04-05
2016-01-1325
We have developed an excitation source identification system that can distinguish excitation sources on a sub-assembly level (around 30mm) for vehicle components by combining a measurement and a timing analysis. Therefore, noise and vibration problems can be solved at an early stage of development and the development period can be shortened. This system is composed of measurement, control, modeling, and excitation source identification parts. The measurement and the excitation source identification parts are the main topics of this paper. In the measurement part, multiple physical quantities can be measured in multi-channel (noise and vibration: 48ch, general purpose: 64ch), and these time data can be analyzed by using a high-resolution signal analysis (Instantaneous Frequency Analysis (IFA)) that we developed.
Technical Paper

A Virtual ECU and Its Application to Control System Analysis - Power Window System Demonstration

2016-04-05
2016-01-0022
A virtual power window control system was built in order to look into and demonstrate applications of microcontroller models. A virtual ECU simulated microcontroller hardware operations. The microcontroller program, which was written in binary digital codes, was executed step-by-step as the virtual ECU simulation went on. Thus, production-ready codes of ECUs are of primary interest in this research. The mechanical system of the power window, the DC motor to lift the window glass, the H-bridge MOSFET drivers, and the current sensing circuit to detect window locking are also modeled. This means that the hardware system of the control system was precisely modeled in terms of mechanical and circuit components. By integrating these models into continuous and discrete co-simulation, the power window control system was analyzed in detail from the microscopic command execution of the microcontroller to the macroscopic motion of the window mechanism altogether.
Technical Paper

Study of Development Technology of Brake Caliper Which Balances Preventing Squeal with Weight Reduction

2015-09-27
2015-01-2688
It is well known that improving NV performance and weight saving are reciprocity. Brake squeal free is one of the top priority issues during development of brake system. To date, complex eigenvalue analysis has been utilized for prediction of brake squeal. It solves the structural instability problems by modal coupling which is the phenomenon that natural frequencies of normal modes are quite consistent. The positive real parts of complex eigenvalues are identified as instable vibration which causes brake squeal. On the other hand, the needs for light-weight brake system are higher than before due to recent trends of economizing fuel consumption and high driving performance. In order to obtain coexistence of brake squeal free with weight saving, shape optimization technique has been proposed for complex eigenvalue analysis.
Technical Paper

Volumetric Efficiency Improvement of High-Pressure Fuel Pump for Gasoline Direct Injection Engine

2015-04-14
2015-01-1273
A recent trend in high-pressure gasoline pumps is increasing the outlet pressure. One of the most important topics for increasing this pressure is improving volumetric efficiency. Therefore, the purpose of this research is to quantify the breakdown of efficiency loss factors and to suggest a new design for improving volumetric efficiency. Authors developed a method of quantifying the efficiency loss breakdown of high-pressure gasoline pumps by using 1D fluid pressure simulation results and conducting evaluation experiments regarding sensitivity. Authors separated pump movement into three phases; suction, compression, and delivery. Authors then investigated the loss factors in each phase. As a result, authors obtained an equation for predicting the final output volume. The equation consists of a limit output volume and other types of leakage volumes.
Technical Paper

A Semi-Active Suspension System Using Ride Control Based on Bi-linear Optimal Control Theory and Handling Control Considering Roll Feeling

2015-04-14
2015-01-1501
New ride control and handling control are developed, and installed in a system using only vehicle height sensor as dedicated sensors and pressure control type semi-active damper. Bi-linear optimal control is applied for controlling ride comfort control constructed observer which is inputted vehicle height sensor for calculating state quantity then used output of the observer. Behavior of vehicle was investigated by vehicle experiment and formalized to further improve the feeling of roll generated by handling control and devised and applied semi-active suspension control method which transiently realize the behavior. Proposed semi-active suspension system not only achieves damping performance as well as skyhook control, but also improves smooth ride comfort and handling performance including roll feeling. In this report, we describe aim, feature and effect of this system.
Technical Paper

Diagnostic Coverage Evaluation Method for Analog Circuits to Comply with Functional Safety Standards

2015-04-14
2015-01-0267
The ISO 26262 is a functional safety standard for road vehicles. The standard requires manufacturers to conduct quantitative assessment of the diagnostic coverage (DC) of products. The DC is defined as the percentage of failure probability covered by safety mechanisms. However, DC evaluation methods for drift faults, in which the change in element values is not constant, have not been discussed. In this paper, we propose a DC evaluation method for analog circuits with drift faults. With this method, we first parameterize the effect of drift faults onto a bounded region then split the region into safe fault, hazardous detectable fault, and hazardous undetectable fault regions. We evaluate the classification rate distribution by the area ratios of these regions.
Journal Article

Injection Quantity Range Enhancement by Using Current Waveform Control Technique for DI Gasoline Injector

2014-04-01
2014-01-1211
We have achieved injection quantity range enhancement by using the current waveform control technique for direct injection (DI) gasoline injectors. In this study, we developed an injection quantity simulator to find out the mechanism of non-linear characteristics. We clarified the non-linear production mechanism by using the simulator. This simulator is a one-dimensional simulator that incorporates calculation results from both unsteady electromagnetic field analysis and hydraulic flow analysis into the motion equation of this simulation code. We investigated the relation between armature and the injection quantity by using the simulator. As a result, we clarified that the non-linearity was produced by the bounce of the armature in the opening action. Thus, we found that it is effective to reduce the armature bounce to improve the linearity of the injection quantity characteristics.
Technical Paper

Spray Atomization Study on Multi-Hole Nozzle for Direct Injection Gasoline Engines

2013-04-08
2013-01-1596
We investigated the size of fuel spray droplets from nozzles for direct injection gasoline (DIG) engines. Our findings showed that the droplet size can be predicted by referencing the geometry of the nozzle. In a DIG engine, which is used as part of a system to reduce fuel consumption, the injector nozzle causes the fuel to spray directly into the combustion chamber. It is important that this fuel spray avoid adhesion to the chamber wall, so multi-hole injection nozzles are used to obtain spray shape adaptability. It is also important that spray droplets be finely atomized to achieve fast vaporization. We have developed a method to predict the atomization level of nozzles for fine atomization nozzle design. The multi-hole nozzle used in a typical DIG injector has a thin fuel passage upstream of the orifice hole. This thin passage affects the droplet size, and predicting the droplet size is quite difficult if using only the orifice diameter.
Technical Paper

Model-Based Technique for Air-Intake-System Control Using Thermo-Fluid Dynamic Simulation of SI Engines and Multiple-Objective Optimization

2011-10-06
2011-28-0119
We have developed a model-based control for the air intake system in a variable valve engine, employing total engine simulation, the response surface method and multi-objective optimization scheme. In our technique, we performed the simulation model tuning and validation, followed by the creation of a dataset for the polynomial regression analysis of the charging efficiency. A D-optimal design, robust least squares method, and likelihood-ratio test were demonstrated to yield a robust and accurate control model. Coupling the total engine simulator with a genetic algorithm, model based calibration for optimal valve timing stored in lookup table was carried out under multiple objectives and restrictions. The reliability of the implementation control model, which considers the effect of gas dynamics in the intake system, was confirmed using a model-in-the-loop simulation.
Technical Paper

Development of an Electrically-Driven Intelligent Brake System for EV

2011-05-17
2011-39-7211
This paper presents the electrically driven intelligent brake system that has been developed for electric vehicles, which are expected to penetrate markets rapidly amid the ongoing energy paradigm shift. This brake system achieves a cooperative energy regeneration function and high responsiveness while providing braking performance, system reliability and vehicle mounting ease equal to that of conventional brake systems with a vacuum booster. This paper outlines the newly developed brake system and describes how to decide the target brake force which is achieved a regenerative braking capability for recovering energy efficiently without sacrificing braking.
Journal Article

Development of an Electrically Driven Intelligent Brake System

2011-04-12
2011-01-0568
This paper presents an electrically driven intelligent brake system that has been developed for electric vehicles and hybrid electric vehicles, which are expected to penetrate markets rapidly amid the ongoing energy paradigm shift. This brake system achieves a cooperative energy regeneration function and high responsiveness while providing braking performance, system reliability and vehicle mounting ease equal to that of conventional brake systems with a vacuum booster. This paper outlines the newly developed brake system and describes various issues involved in cooperative regenerative braking along with the technologies that were applied to address them.
X