Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Test Vector Development for Verification and Validation of Heavy-Duty Autonomous Vehicle Operations

2024-04-09
2024-01-1973
The current focus in the ongoing development of autonomous driving systems (ADS) for heavy duty vehicles is that of vehicle operational safety. To this end, developers and researchers alike are working towards a complete understanding of the operating environments and conditions that autonomous vehicles are subject to during their mission. This understanding is critical to the testing and validation phases of the development of autonomous vehicles and allows for the identification of both the nominal and edge case scenarios encountered by these systems. Previous work by the authors saw the development of a comprehensive scenario generation framework to identify an operating domain specification (ODS), or external and internal conditions an autonomous driving system can expect to encounter on its mission to form critical scenario groups for autonomous vehicle testing and validating using statistical patterns, clustering, and correlation.
Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Technical Paper

Fatigue Analysis and Rapid Design Process of Anti-vibration Rubber Parts for Automobiles

2024-04-09
2024-01-2255
In recent years, an increase in vehicle weight due to the electrification of automobiles, specifically EVs, has increased the input loads on anti-vibration rubber parts. Moreover, the characteristics of these loads have also changed due to the rotational drive of electric motors, regenerative braking, and other factors. When designing a vehicle, in advance it is necessary to set specifications that take into account the spring characteristics and durability of the anti-vibration rubber parts in order to meet functional requirements. In this study, the hyperelastic and fatigue characteristics (S-N diagram and Haigh diagram) of Rubbers which is widely used for anti-vibration rubber parts, were experimentally obtained, and structural and fatigue analyses using FEM (Finite Element Method) were conducted in conjunction with spring and fatigue tests of anti-vibration rubber parts to determine the correlation between their spring and fatigue characteristics.
Technical Paper

Assessing Resilience in Lane Detection Methods: Infrastructure-Based Sensors and Traditional Approaches for Autonomous Vehicles

2024-04-09
2024-01-2039
Traditional autonomous vehicle perception subsystems that use onboard sensors have the drawbacks of high computational load and data duplication. Infrastructure-based sensors, which can provide high quality information without the computational burden and data duplication, are an alternative to traditional autonomous vehicle perception subsystems. However, these technologies are still in the early stages of development and have not been extensively evaluated for lane detection system performance. Therefore, there is a lack of quantitative data on their performance relative to traditional perception methods, especially during hazardous scenarios, such as lane line occlusion, sensor failure, and environmental obstructions.
Technical Paper

Vehicle Lateral Offset Estimation Using Infrastructure Information for Reduced Compute Load

2023-04-11
2023-01-0800
Accurate perception of the driving environment and a highly accurate position of the vehicle are paramount to safe Autonomous Vehicle (AV) operation. AVs gather data about the environment using various sensors. For a robust perception and localization system, incoming data from multiple sensors is usually fused together using advanced computational algorithms, which historically requires a high-compute load. To reduce AV compute load and its negative effects on vehicle energy efficiency, we propose a new infrastructure information source (IIS) to provide environmental data to the AV. The new energy–efficient IIS, chip–enabled raised pavement markers are mounted along road lane lines and are able to communicate a unique identifier and their global navigation satellite system position to the AV. This new IIS is incorporated into an energy efficient sensor fusion strategy that combines its information with that from traditional sensor.
Technical Paper

Auto Stop-Start Fuel Consumption Benefits

2023-04-11
2023-01-0346
With increasingly stringent regulations mandating the improvement of vehicle fuel economy, automotive manufacturers face growing pressure to develop and implement technologies that improve overall system efficiency. One such technology is an automatic (auto) stop-start feature. Auto stop-start reduces idle time and reduces fuel use by temporarily shutting the engine off when the vehicle comes to a stop and automatically re-starting it when the brake is released, or the accelerator is pressed. As mandated by the U.S. Congress, the U.S. Environmental Protection Agency (EPA) is required to keep the public informed about fuel saving practices. This is done, in partnership with the U.S. Department of Energy (DOE), through the fueleconomy.gov website. The “Fuel-Saving Technologies” and “Gas Mileage Tips” sections of the website are focused on helping the public make informed purchasing decisions and encouraging fuel-saving driving habits.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
Journal Article

Pad Correction Estimation around 5 Belt Wind Tunnel Wheel Belts Using Pressure Tap Measurement and Mathematical Pressure Distribution Model

2022-03-29
2022-01-0902
5 belt wind tunnels are the most common facility to conduct the experimental aerodynamics development for production cars. Among aerodynamic properties, usually drag is the most important development target, but lift force and its front/rear balance is also important for vehicle dynamics. Related to the lift measurement, it is known that the “pad correction”, the correction in the lift measurement values for the undesirable aerodynamic force acting on wheel belt surface around the tire contact patch, must be accounted. Due to the pad correction measurement difficulties, it is common to simply subtract a fixed amount of lift values from measured lift force. However, this method is obviously not perfect as the pad corrections are different for differing vehicle body shapes, aerodynamic configurations, tire sizes and shapes.
Technical Paper

Advanced Finite-Volume Numerics and Source Term Assumptions for Kernel and G-Equation Modelling of Propane/Air Flames

2022-03-29
2022-01-0406
G-Equation models represent propagating flame fronts with an implicit two-dimensional surface representation (level-set). Level-set methods are fast, as transport source terms for the implicit surface can be solved with finite-volume operators on the finite-volume domain, without having to build the actual surface. However, they include approximations whose practical effects are not properly understood. In this study, we improved the numerics of the FRESCO CFD code’s G-Equation solver and developed a new method to simulate kernel growth using signed distance functions and the analytical sphere-mesh overlap. We analyzed their role for simulating propane/air flames, using three well-established constant-volume configurations: a one-dimensional, freely propagating laminar flame; a disc-shaped, constant-volume swirl combustor; and torch-jet flame development through an orifice from a two-chamber device.
Journal Article

Evaluation of High-Temperature Martensitic Steels for Heavy-Duty Diesel Piston Applications

2022-03-29
2022-01-0599
Five different commercially available high-temperature martensitic steels were evaluated for use in a heavy-duty diesel engine piston application and compared to existing piston alloys 4140 and microalloyed steel 38MnSiVS5 (MAS). Finite element analyses (FEA) were performed to predict the temperature and stress distributions for severe engine operating conditions of interest, and thus aid in the selection of the candidate steels. Complementary material testing was conducted to evaluate the properties relevant to the material performance in a piston. The elevated temperature strength, strength evolution during thermal aging, and thermal property data were used as inputs into the FEA piston models. Additionally, the long-term oxidation performance was assessed relative to the predicted maximum operating temperature for each material using coupon samples in a controlled-atmosphere cyclic-oxidation test rig.
Journal Article

Fuel Stratification Effects on Gasoline Compression Ignition with a Regular-Grade Gasoline on a Single-Cylinder Medium-Duty Diesel Engine at Low Load

2021-09-21
2021-01-1173
Prior research studies have investigated a wide variety of gasoline compression ignition (GCI) injection strategies and the resulting fuel stratification levels to maintain control over the combustion phasing, duration, and heat release rate. Previous GCI research at the US Department of Energy’s Oak Ridge National Laboratory has shown that for a combustion mode with a low degree of fuel stratification, called “partial fuel stratification” (PFS), gasoline range fuels with anti-knock index values in the range of regular-grade gasoline (~87 anti-knock index or higher) provides very little controllability over the timing of combustion without significant boost pressures. On the contrary, heavy fuel stratification (HFS) provides control over combustion phasing but has challenges achieving low temperature combustion operation, which has the benefits of low NOX and soot emissions, because of the air handling burdens associated with the required high exhaust gas recirculation rates.
Technical Paper

Three-Dimensional CFD Investigation of Pre-Spark Heat Release in a Boosted SI Engine

2021-04-06
2021-01-0400
Low-temperature heat release (LTHR) in spark-ignited internal combustion engines is a critical step toward the occurrence of auto-ignition, which can lead to an undesirable phenomenon known as engine knock. Hence, correct predictions of LTHR are of utmost importance to improve the understanding of knock and enable techniques aimed at controlling it. While LTHR is typically obscured by the deflagration following the spark ignition, extremely late ignition timings can lead to LTHR occurrence prior to the spark, i.e., pre-spark heat release (PSHR). In this research, PSHR in a boosted direct-injection SI engine was numerically investigated using three-dimensional computational fluid dynamics (CFD). A hybrid approach was used, based on the G-equation model for representing the turbulent flame front and the multi-zone well-stirred reactor model for tracking the chemical reactions within the unburnt region.
Technical Paper

Dilute Combustion Control Using Spiking Neural Networks

2021-04-06
2021-01-0534
Dilute combustion with exhaust gas recirculation (EGR) in spark-ignition engines presents a cost-effective method for achieving higher levels of engine efficiency. At high levels of EGR, however, cycle-to-cycle variability (CCV) of the combustion process is exacerbated by sporadic occurrences of misfires and partial burns. Previous studies have shown that temporal deterministic patterns emerge at such conditions and certain combustion cycles have a significant influence over future events. Due to the complexity of the combustion process and the nature of CCV, harnessing all the deterministic information for control purposes has remained challenging even with physics based 0-D, 1-D, and high-fidelity computational fluid dynamics (CFD) models. In this study, we present a data-driven approach to optimize the combustion process by controlling CCV adjusting the cycle-to-cycle fuel injection quantity.
Journal Article

EGR Dilution and Fuel Property Effects on High-Efficiency Spark-Ignition Flames

2021-04-06
2021-01-0483
Modern spark ignition internal combustion engines rely on fast combustion rates and high dilution to achieve high brake thermal efficiencies. To accomplish this, new engine designs have moved towards increased tumble ratios and stroke-to-bore ratios. Increased tumble ratios correlate positively with increases in turbulent kinetic energy and improved fuel and residual gas mixing, all of which favor faster and more efficient combustion. Longer stroke-to-bore ratios allow higher geometric compression ratios and use of late intake valve closing to control peak compression pressures and temperatures. The addition of dilution to improve efficiency is limited by the resulting increase in combustion instabilities manifested by cycle-to-cycle variability.
Technical Paper

Variability Analysis of FMVSS-121 Air Brake Systems: 60-mi/hr Service Brake System Performance Data for Truck Tractors

2020-10-05
2020-01-1640
In support of the Federal Motor Carrier Safety Administration’s (FMCSA’s) ongoing interest in connected and automated commercial vehicles, this report summarizes analyses conducted to quantify variability in stopping distance tests conducted on commercial truck tractors. The data used were retrieved from tests performed under the controlled conditions specified for FMVSS-121 air brake system compliance testing. The report explores factors affecting the variability of the service brake stopping distance as defined by 49 CFR 571.121, S5.3.1 Stopping Distance—trucks and buses stopping distance. Variables examined in this analysis include brake type, weight, wheelbase, and tractor antilock braking system (ABS). This analysis uses existing test data collected between 2010 and 2019. Several of the examined parameters affected both tractor stopping distance and stopping distance variability.
Technical Paper

Detection of Polar Compounds Condensed on Particulate Matter Using Capillary Electrophoresis-Mass Spectrometry

2020-04-14
2020-01-0395
A new analytical method to aid in the understanding of the organic carbon (OC) phase of particulate matter (PM) from advanced compression ignition (ACI) operating modes, is presented. The presence of NO2 and unburned fuel aromatics in ACI emissions, and the low exhaust temperatures that result from this low temperature combustion strategy, provide the right conditions for the formation of carboxylic acids and nitroaromatic compounds. These polar compounds contribute to OC in the PM and are not typically measured using nonpolar solvent extraction methods such as the soluble organic fraction (SOF) method. The new extraction and detection method employs capillary electrophoresis with electrospray ionization mass spectrometry (CE-ESI MS) and was specifically developed to determine polar organic compounds in the ACI PM emissions. The new method identified both nitrophenols and aromatic carboxylic acids in the ACI PM.
Technical Paper

Engine Sound Design Process with Utilization of Industrial Styling Design

2020-04-14
2020-01-0402
This report will introduce a new engine sound design concept and propose a design process. In sound design for automotive development of popular vehicles, it is common to seek to enhance the state of the existing marketed vehicle in order to meet further demands from customers. For standout models such as sports vehicles and flagship vehicles, sound design commonly reflects the sound ideals of the manufacturer’s branding or engineers. Each case has common point that the sound direction is determined by itself clearly. However, in this way, it is difficult to create abstract concept sound. Because it is no direction for the sound. Therefore, this paper examines ways to achieve a new sound that satisfies a sound concept based on an unprecedented abstract concept “wood”. The reason why sound concept is “wood”, it is the difficult to make as a new engine sound and good study to reveal usefulness of new sound design process.
Technical Paper

Vibrational Analysis Method on High-frequency Electric-drive Motor Noise

2020-04-14
2020-01-0463
When a vehicle is cruising, unpleasant noise in the 4 to 5 KHz high-frequency band can be heard at the center of all seats in the vehicle cabin. In order to specify the source of this noise, the correlation between the noise and airborne noise from the outer surface of the transmission was determined, and transfer path analysis was conducted for the interior of the transmission. The results indicated that the source of the noise was the 0th-order breathing mode specific to the drive motor. To make it possible to predict this at the desk, a vibrational analysis method was proposed for drive motors made up of laminated electrical steel sheets and segment-type coils. Material properties data for the electrical steel sheets and coils was employed in the drive motor vibrational analysis model without change. The shapes of the laminated electrical steel sheets and coils were also accurately modeled.
Technical Paper

LES Modeling Study on Cycle-to-Cycle Variations in a DISI Engine

2020-04-14
2020-01-0242
The reduction of cycle-to-cycle variations (CCV) is a prerequisite for the development and control of spark-ignition engines with increased efficiency and reduced engine-out emissions. To this end, Large-Eddy Simulations (LES) can improve the understanding of stochastic in-cylinder phenomena during the engine design process, if the employed modeling approach is sufficiently accurate. In this work, an inhouse code has been used to investigate CCV in a direct-injected spark ignition (DISI) engine under fuel-lean conditions with respect to a stoichiometric baseline operating point. It is shown that the crank angle when a characteristic fuel mass fraction is burned, e.g. MFB50, correlates with the equivalence ratio computed as a local average in the vicinity of the spark plug. The lean operating point exhibits significant CCV, which are shown to be correlated also with the in-cylinder subfilter-scale (SFS) kinetic energy.
X