Refine Your Search

Topic

Author

Search Results

Technical Paper

A Novel Vehicle-to-Vehicle Fast Charging Control System Utilizing Motor and Inverter in EV

2022-03-29
2022-01-0170
As electric vehicles become more widespread, such vehicles may be subject to “range anxiety” due to the risk of discharging during driving or the discharging when left unused for a long period. Accordingly, a vehicle equipped with a mobile charger that can provide a charge in an emergency. The vehicle with the mobile charger is usually composed of a large capacity battery, a power converter in a small truck. However, the large capacity battery and the power converter are disadvantageous in that they are large in size and expensive and should be produced as a special vehicle. In this paper, we propose a method to solve the problem using an internal EV system without requiring an additional power generation, battery and a charging-and-discharging device. The method is a novel Vehicle-to-Vehicle (V2V) fast charging control system utilizing motor and inverter in EV.
Technical Paper

Speed Limiter Using Disturbance Observer

2021-04-06
2021-01-0102
This paper suggests disturbance observer which improves performance of speed limit assist control. The nonlinear disturbance observer was designed so that disturbance caused by parameter and load uncertainties is able to be estimated exponentially. With the contribution of the observer, feed-forward and integral controllers can be omitted while improving steady-state error elimination and overshoot reduction. The acceleration observer is also designed to reduce the effect of wheel slip and changing slope. The performance of the controllers has been verified not only on flat roads, but also on wave road and rapidly changing ramps.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Prediction of In-Cylinder Pressure for Light-Duty Diesel Engines

2019-04-02
2019-01-0943
In recent years, emission regulations have been getting increasingly strict. In the development of engines that comply with these regulations, in-cylinder pressure plays a fundamental role, as it is necessary to analyze combustion characteristics and control combustion-related parameters. The analysis of in-cylinder pressure data enables the modelling of exhaust emissions in which characteristic temperature can be derived from the in-cylinder pressure, and the pressure can be used for other investigations, such as optimizing efficiency and emissions through controlling combustion. Therefore, a piezoelectric pressure sensor to measure in-cylinder pressure is an essential element in the engine research field. However, it is difficult to practice the installation of this pressure sensor on all engines and on-road vehicles owing to cost issues.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion

2019-04-02
2019-01-0207
Numerical investigation of engine performance and emissions of a six-stroke gasoline compression ignition (GCI) engine combustion at low load conditions is presented. In order to identify the effects of additional two strokes of the six-stroke engine cycle on the thermal and chemical conditions of charge mixtures, an in-house multi-dimensional CFD code coupled with high fidelity physical sub-models along with the Chemkin library was employed. The combustion and emissions were calculated using a reduced chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Two power strokes per cycle were achieved using multiple injections during compression strokes. Parametric variations of injection strategy viz., individual injection timing for both the power strokes and the split ratio that enable the control of combustion phasing of both the power strokes were explored.
Technical Paper

A Study of Fuel Economy Improvement on US Fuel Economy Test Cycle by Model Based Cooled HP EGR System and Robust Logic through S-FMEA

2015-04-14
2015-01-1637
This paper focuses on the vehicle test result of the US fuel economy test cycles such as FTP75, HWY and US06 with model based Cooled EGR system. Cooled EGR SW function was realized by Model Based Development (internal rapid prototyping) using iRPT tool. With EGR, mixing exhaust gas with clean air reduces the oxygen concentration in the cylinder charge, as a result, the combustion process is slowed, and the combustion temperature drops. This experiment confirmed that the spark timing was more advanced without knocking and manifold pressure was increased in all cases with EGR. A positive potential of fuel economy improvement on FTP mode, US06 mode have seen in this experiment but not for HWY where the engine load is quite low and the spark advance is already optimized. As a result, fuel economy was increased by maximum 3.3% on FTP, 2.7% on US06, decreased by 0.3% on HWY mode respectively with EGR.
Journal Article

Development of Virtual Road Wheel Input Forces for Belgian Ground

2014-04-01
2014-01-0381
Numerical durability analysis is the only approach that can be used to assess the durability of vehicles in early stages of development. In these stages, where there are no physical prototypes available, the road wheel forces (or spindle forces) for durability testing on Belgian PG (Proving Ground) must be predicted by VPG (Virtual Proving Ground) or derived from the measured forces of predecessor vehicles. In addition, the tuning parts and geometry are not fixed at these stages. This results in the variation of spindle forces during the development stages. Therefore, it is not reasonable to choose the forces predicted at a specific tuning condition as standard forces. It is more reasonable to determine the standard forces stochastically using the DB of the measured forces of predecessor vehicles. The spindle forces measured or predicted on Belgian PG are typically stationary random.
Journal Article

A Study on How to Utilize Hilly Road Information in Equivalent Consumption Minimization Strategy of FCHEVs

2014-04-01
2014-01-1827
This paper presents an adaptation method of equivalent factor in equivalent consumption minimization strategy (ECMS) of fuel cell hybrid electric vehicle (FCHEV) using hilly road information. Instantaneous optimization approach such as ECMS is one of real-time controllers. Furthermore, it is widely accepted that ECMS achieves near-optimum results with the selection of the appropriate equivalent factor. However, a lack of hilly road information no longer guarantees near-optimum results as well as charge-sustaining of ECMS under hilly road conditions. In this paper, first, an optimal control problem is formulated to derive ECMS analytical solution based on simplified models. Then, we proposed updating method of equivalent factor based on sensitivity analysis. The proposed method tries to mimic the globally optimal equivalent factor trajectory extracted from dynamic programming solutions.
Technical Paper

Optimization of Body Structure for Road Noise Performance

2014-04-01
2014-01-0010
It is common knowledge that body structure is an important factor of road noise performance. Thus, a high stiffness of body system is required, and determining their optimized stiffness and structure is necessary. Therefore, a method for improving body stiffness and validating the relationship between stiffness and road noise through CAE and experimental trials was tested. Furthermore, a guideline for optimizing body structure for road noise performance was suggested.
Technical Paper

Development of Valvetrain System to Improve Knock Characteristics for Gasoline Engine Fuel Economy

2014-04-01
2014-01-1639
It is difficult to reach higher compression ratios of the gasoline engine even though higher compression ratios improve thermal efficiency. One of the barriers is large torque drop led by knocking. Extensive researches to suppress knocking of the gasoline engine have been conducted. It is focused on lowering the temperature of fuel mixture in combustion chamber at compression top dead center (TDC). This paper covers the new valvetrain system to decrease the temperature of exhaust valve bottom (combustion) side. Hollow head and stem sodium filled valve (HHSV) have shown more heat transfer from combustion chamber to valve seat insert and valve guide, and higher thermal conductivity valve seat insert (HVSI) and valve guide (HVG) help to decrease valve temperature lower by higher heat transfer.
Technical Paper

A Study of Combustion Control Parameter Optimization in a Diesel Engine Using Cylinder Pressure

2014-04-01
2014-01-1352
In diesel engine development, fuel consumption, emissions and combustion noise have been main development objectives for fuel economy, low emissions and NVH. These main objectives can be achieved with advanced engine technologies. As electronic actuating systems are widely applied on diesel engines, elaborate control is required. This is because the main development targets are greatly affected by engine control parameters but frequently have a trade-off relationship. Therefore, the optimization of combustion control parameters is one of the most challenging tasks for improvement. As an efficient method, the DOE methodology has been used in engine calibration. In order to develop a mathematical model, the input and output values must be measured. Unlike other variables, combustion noise has been continually reported to have better indication method in simplified way. In this paper, advanced noise index from cylinder pressure signal is applied on engine test.
Technical Paper

Improved Cyclic Performances of Li-Sulfur Batteries with Sulfone-Based Electrolyte

2014-04-01
2014-01-1844
The effects of electrolyte on the cyclability of Li/S battery were investigated in this work. The electrochemical properties of single component ether solvents and a binary mixture of ether solvents were studied. These ether-based electrolytes have polysulfide shuttle problems which result in severe low Coulombic efficiency. To overcome these issues, sulfone-based solvent which forms a stable passivation film at the anode surface were used. As a result, the proper composition of sulfone-based electrolyte were obtained. Its capacity and reversible capacity retention were improved to 715 mAh/g and 72.6% which were increased by 52.1% and 63.1%, respectively, compared to those of ether-based electrolyte.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Development of Accelerated Reliability Testing Method for Electric Vehicle Motor and Battery System

2014-04-01
2014-01-0748
Currently, the interest in accelerated reliability testing (ART) of electric vehicles parts has been increasing. In particular, an electric motor and battery are vital components of battery powered electric vehicles. The electric motor has two major roles, to discharge or charge battery when it is driven or braking. For analyzing the exact behavior mechanism of electric motor and predicting lithium-ion battery cell degradation, new accelerated reliability testing technology is required. This paper describes the results of research and development in new approach to reliability testing for electric vehicles. The methodology to measure a precise motor output torque of the rotating rotor using telemetry system was provided. The electric energy quantities as well as the used quantities of the electric power were also analyzed. The results of research and development in new approach to reliability testing for electric vehicles were systematized and reflected in development.
Technical Paper

Automated Optimizing Calibration of Engine Driveability on the Dynamic Powertrain Test Bed

2013-10-14
2013-01-2588
Engine calibration on the powertrain test bed with transient mode is proposed with dynamic powertrain test bed having low inertia dynamometer. Automated ECU (Engine Control Unit) calibration system is completed with the combination of experimental design software, powertrain test bed, evaluation tools and their electrical interfaces. The process is composed up of the system interface definition, test design using DoE skill, test proceedings by step sequence of connecting systems, measured data collecting, mathematical model and optimization result extraction at the end. All the processes are automated by interfaces between the systems. Acceleration surge is minimized by proposed process by optimizing combustion control labels and tip in driveability is maximized by manipulating torque filter labels of EMS (Engine Management System) logic. Their detailed steps from the problem definition to the verification test results of improved design with vehicle test are presented.
Technical Paper

Idle Sound Quality Development for Diesel V6 Engine

2011-05-17
2011-01-1563
A comprehensive investigation was carried out in order to develop the idle sound quality for diesel V6 engine when the engine development process is applied to power-train system, which included new 8-speed automatic transmission for breaking down the noise contribution between the mechanical excitation and the combustion excitation. First of all, the improvement of dynamic characteristic can be achieved during the early stages of the engine development process using experimental modal analysis (EMA) & the robust design of each engine functional system. In addition, the engine structural attenuation (SA) is enhanced such that the radiated combustion noise of the engine can be maintained at a target level even with an increased combustion excitation. It was found that the engine system has better parts and worse parts in frequency range throughout the SA analysis. It is important that weak points in the system should be optimized.
Journal Article

Recent Advances in the Development of Hyundai · Kia's Fuel Cell Electric Vehicles

2010-04-12
2010-01-1089
Wide attention to fuel cell electric vehicles (FCEVs) comes from two huge issues currently the world is facing with: the concern of the petroleum reserves depletion due to consequent oil dependence and the earth global warming due in some extent to vehicle emissions. In this background, Hyundai, along with its sister company Kia, has been building the FCEVs and operating their test fleet with several tens of units at home and abroad. Since 2004, 32 passenger vehicles have been offered for the Department of Energy's controlled hydrogen fleet and infrastructure demonstration and validation project in the U.S. In the meantime, from 2006, 30 passenger vehicles as well as four buses, featuring the in-house developed fuel cell stack and its associated components, are currently under the domestic operation for the FCEV learning demonstration led by the Ministry of Knowledge and Economy.
Technical Paper

Individual Cylinder Air-Fuel Ratio Estimation Algorithm for Variable Valve Lift (VVL) Engines

2010-04-12
2010-01-0785
In a multi-cylinder variable valve lift (VVL) engine, in spite of its high efficiency and low emission performance, operation of the variable valve lift brings about not only variation of the air-fuel ratio at the exhaust manifold, but also individual cylinder air-fuel ratio maldistribution. In this study, in order to reduce the air-fuel ratio variation and maldistribution, we propose an individual cylinder air-fuel ratio estimation algorithm for individual cylinder air-fuel ratio control. For the purpose of the individual cylinder air-fuel ratio estimation, air charging dynamics are modeled according to valve lift conditions. In addition, based on the air charging model, individual cylinder air-fuel ratios are estimated by multi-rate sampling from single universal exhaust gas oxygen (UEGO) sensor located on the exhaust manifold. Estimation results are validated with a one-dimensional engine simulation tool.
Technical Paper

Available Power and Energy Prediction Using a Simplified Circuit Model of HEV Li-ion Battery

2010-04-12
2010-01-1074
Due to aging of a battery over lifetime, the rated power and nominal energy capacity will be reduced compared with the initial rated power and capacity. These result in influences on the vehicle driving performance and fuel economy. To monitor and diagnose the aging of the battery, in this paper, the method of predicting the available rated power and energy capacity of Li-ion battery under in-vehicle condition is proposed. Under constant power test, available power is calculated from the estimated parameters using recursive least square method. Further, available energy capacity is evaluated through SOH(cn) defined by the ratio of initial state-of-charge (SOC) variation to present SOC (\GdSOC ⁿ /ΔSOC ⁿ ) variation under arbitrary in-vehicle driving cycles. To verify the proposed method, experiments for aging Li-ion battery are performed in hybrid electric vehicle.
Technical Paper

Real-Time Powertrain Control Strategy for Series-Parallel Hybrid Electric Vehicles

2007-08-05
2007-01-3472
The series-parallel hybrid electric vehicle(HEV), which employs a planetary gear set to combine one internal combustion engine(ICE) and two electric motors(EMs), can take advantages of both series and parallel hybrid system. The efficient powertrain operating point of the system can be obtained by the instantaneous optimization of equivalent fuel consumption. However, heavy computational requirements and variable constraints of the optimization process make it difficult to build real-time control strategy. To overcome the difficulty, this study suggests the control strategy which divides the optimization process into 2 stages. In the first stage, a target of charge/discharge power is determined based on equivalent fuel consumption, then in the second stage, an engine operating point is determined taking power transfer efficiency into account.
X