Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimization of Body Joint Stiffness and Structure

2022-03-29
2022-01-0756
A body joint is one of the most major factors affecting the overall body stiffness in a body system. Thus, in order to optimize the body system, the joint must be also optimized. In order to optimize a body joint, it is necessary to first identify the efficiency of the joint itself. Then, the joint stiffness targets for each joint must be set by analyzing the interaction between joint stiffness and overall body stiffness and the function of the joint in terms of vehicle performance. Finally, an optimal joint structure should be designed with an optimal design methodology. In this study, an optimal methodology for the joint stiffness and design is introduced. Based on this research, an optimized joint design for each joint was applied to the new SUV model resulting in a lightweight body with a required body stiffness.
Technical Paper

Development of Adaptive Powertrain Control Utilizing ADAS and GPS

2019-04-02
2019-01-0883
This paper introduces the advancement of Engine Idle Stop-and-Go (ISG, also known as Auto Engine Stop-Start) and Neutral Coasting Control (NCC) with utilizing Advanced Driver Assistance System (ADAS) and GPS. The ISG and the In-Neutral Coasting (also known as Sailing or Gliding) have been widely implemented in recent vehicles for improving their fuel economy. However, many drivers find them somewhat disturbing because they basically change behaviors of their cars from what they used to. This annoyance discourages usages of those functions and eventually undermines their benefit of fuel saving. In order to mitigate the problem, new ISG and NCC algorithms are proposed. As opposed to the conventional logics that rely only on driver’s pedal action, the new algorithms determine whether or not to enable those functions for the given driving condition, based on the traffic information obtained using ADAS sensors and the location data from GPS and navigation map.
Technical Paper

A Study on Control Logic Design for Power Seat

2019-04-02
2019-01-0466
The large luxury sedan seat has a 22-way Movement. It offers a wide range of adjustments to enhance passenger comfort performance while it has many constraints on movement in constrained indoor space. In addition, the power seat is operated by a motor, which makes it difficult for the user to determine the amount of adjustment, unlike determining the amount of adjustment by the power and feel of a person, such as manual seat adjustment. IMS, one-touch mode, is also constrained by parameters such as indoor space package, user's lifestyle, etc. during function playback. This paper aims to design the seat control logic to achieve the best seat comfort while satisfying each constraint. The results of this study are as follows. Increase robustness of power seat control logic. Provide optimal adjustments and comfort at each location. Offer differentiated custom control and seating modes for each seat. Improve customer satisfaction and quality by upgrading software.
Journal Article

ABC’s of Seat Comfort: A Historical Perspective

2019-04-02
2019-01-0407
Although subjective measurements are critical for qualifying seat comfort in terms of good or bad, objective measurements are the basis for quantifying these differences and ultimately controlling seat comfort performance through engineering design specs, targets, and/or guidelines. Many objective automotive seat comfort tools and techniques used today are based on methods derived in the past. This paper examines the engineering problems and solutions that make these historical influences relevant today. Particular focus is given to design considerations for the A-surface, B-surface, and the compressed surface of the seating system.
Technical Paper

Optimization of Slot Disc Shape for Improving Brake Fade Performance

2018-10-05
2018-01-1883
Due to improvements in vehicle powertrain performance, friction material fade performance is becoming an important topic. For this reason, needs for studies to improve thermal characteristics of the brake system is increasing. Methods for improving the fade characteristics have several ways to improve the thermal characteristic of friction materials and increase disc capacity. However, increasing disc capacity(size) have some risk of weight and cost rise, and friction factor improvements in friction material tend to cause other problems, such as increasing squeal wire brush noise and increasing metal pick up on disc surface. Therefore, a slot disc study is needed to overcome the problems discussed previously. Currently, there is few research history for slot disc related to fade and metal pickup improvements.
Technical Paper

Analysis of Vehicle Voice Recognition Performance in Response to Background Noise and Gender Based Frequency

2017-06-05
2017-01-1888
Voice Recognition (VR) systems have become an integral part of the infotainment systems in the current automotive industry. However, its recognition rate is impacted by external factors such as vehicle cabin noise, road noise, and internal factors which are a function of the voice engine in the system itself. This paper analyzes the VR performance under the effect of two external factors, vehicle cabin noise and the speakers’ speech patterns based on gender. It also compares performance of mid-level sedans from different manufacturers.
Technical Paper

A Research on Brand Sound Positioning and Implementing with Active Sound Design

2017-06-05
2017-01-1754
This paper aims to establish a systematic process of developing a brand driving sound. Firstly, principal factors of a brand sound identity are extracted from factor analysis of many sample cars. As a result, brand sound positioning map is drawn using jury test data. Also, the multiple regression analysis of subjective and objective test results is carried. As a result, the principal factors are expressed by objective test data and brand sound positioning map can be easily updated from the measurement data. In addition, what should be improved for designing a target sound is reviewed. Secondly, various technologies of target sound design are discussed to involve the brand identity and vehicle’s character in driving sound. Also, an efficient tool to implement the target sound with an active sound design (ASD) system in a vehicle is introduced. This tool enables to efficiently design, tune and simulate a target sound for ASD system in a laboratory.
Journal Article

On the Use of Driver-in-the-Loop (DIL) Systems in Commercial Vehicle Chassis Development

2017-01-10
2017-26-0242
A vehicle simulation model is developed, validated and integrated into a closed-loop virtual driving environment using a state-of-the-art hexapod driving simulator. Thirty variant states are implemented and evaluated subjectively on steering and handling performance quality and quantity. Standard open-loop objective testing manoeuvres are simulated and performance metrics are calculated, allowing for a systematic cross-correlation process. Graphical analysis of the correlation metrics proves that chassis changes may accurately be felt through the simulator interface. It is proposed how obtained correlation models may serve for driver-feel optimizing target setting in early vehicle development stages, frontloading a great deal of costly prototype testing. System requirements are established and benefits and limitations are portrayed.
Technical Paper

Technology of an Emotional Engine Sound Designing for Active Sound Control Using Order Balance and Musical Instrument Sound

2016-06-15
2016-01-1782
This paper discusses approaches to emotionally improve the driving sound based on Active Sound Design (ASD). In the first step, target sound design methods are suggested in order to represent the vehicle’s concept and brand image via a driving sound. In this method, formant filter and musical chords are applied to the target sound synthesis. In the second step, a technique to make a target sound realistic in ASD system is discussed, which enables to stimulate the customers' emotion. In this technique, the process to simulate a musical instrument sound for a vivid driving sound and synthesize the sound with FIR filter is studied. Finally, the improved driving sound is demonstrated in ASD system.
Technical Paper

Bio-Based Composites and Their Applications for Auto Interior Parts

2016-04-05
2016-01-0512
Polylactide (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and sugar beets, has attracted much attention for automotive parts application. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the PLA composites including stereocomplexed with L- and D-PLA, we developed the unit processes such as fermentation, separation, lactide conversion, and polymerization. We investigated D-lactic acid fermentation with a view to obtaining the strains capable of producing D-lactic acid, and through catalyst screening test for polycondensation and depolymerization reactions, we got a new method which shortens the whole reaction time of lactide synthesis step. Poly(d-lactide) is obtained from the ring-opening polymerization of d-lactide. Also we investigated several catalysts and polymerization conditions.
Technical Paper

A Study on the Transfer Path Analysis of Brake Creep Groan Noise

2014-09-28
2014-01-2510
Creep groan noise occurs in a just moving vehicle by the simultaneous application of torque to the wheel and the gradual release of brake pressure in-vehicle. It is the low frequency noise giving the driver a very uncomfortable feeling. It is caused by the stick-sleep phenomenon at the lining and disc interface. Recently, the field claim of low frequency creep groan has increased. There are a lot of efforts to improve creep groan noise by means of modification of lining material. In this paper, Transfer path of creep groan noise was analyzed through ODS and TPA. Additionally the correlation between Source (Brake torque variation, Brake vibration) and Creep Groan Sound level was discussed. Finally countermeasure to Creep Groan noise was suggested.
Technical Paper

Optimization of Cooling Air Duct and Dust Cover Shape for Brake Disc Best Cooling Performance

2014-09-28
2014-01-2519
Owing to the enhanced performance of engines these days, more heat should be dissipated in the braking system. Failure of doing this properly causes temperature rise in the brake disc which result in the brake fade, disc distortion, brake judder, etc. A cooling-air-duct was proposed as a solution to prevent these from happening. In this paper, we present our work based on experiments optimized parameters such as direction, location, shapes and the size of the duct for the cooling-air-duct installation in real cars. We installed the duct extended from a front bumper to a rear wheel guard. Experimental parameters were compared with theoretical analysis using the impinging jet analysis. The heat transfer coefficients were determined by using the finite elements method (FEM). We found that our experimental data is supportive of theoretical analysis. We believe that our results should serve an useful guideline for designing the cooling-air-duct for braking system.
Journal Article

Electro-Mechanical Brake for Front Wheel with Back-up Braking

2014-09-28
2014-01-2538
Electro-Mechanical Brake (EMB) is the brake system that is actuated by electrical energy and has a similar design with the Electric Parking Brake (EPB). It uses motor power and gears to provide the necessary torque and a screw & nut mechanism is used to convert the rotational movement into a translational one. The main difference of EMB compared with EPB is that the functional requirements of components are much higher to provide the necessary performance for service braking such as response time. Such highly responsive and independent brake actuators at each wheel lead to enhanced controllability which should result in not only better basic braking performance, but also improvements in various active braking functions such as integrated chassis control, driver assistance systems, or cooperative regenerative braking.
Journal Article

A Study on North American Customer Preference to Interior Noise using Sound Balance Analysis

2014-04-01
2014-01-0023
A new approach to achieve better customer perception of overall vehicle quietness is the sound balance improvement of vehicle interior sound during driving. Interior sound is classified into 3 primary sound source shares such as engine sound relative to revolution speed, tire road noise and wind noise relative to vehicle speed. Each interior sound shares are classified using the synchronous time-domain averaging method. The sound related to revolution order of engine and auxiliaries is considered as engine sound share, tire road noise and wind noise shares are extracted by multiple coherent output power analysis. Sound balance analysis focuses on improving the relative difference in interior sound share level between the 3 primary sound sources. Virtual sound simulator which is able to represent various driving conditions and able to adjust imaginary sound share is built for several vehicles in same compact segment.
Technical Paper

Design Optimization of Suspension Kinematic and Compliance Characteristics

2014-04-01
2014-01-0394
In the early stage of vehicle development process, it is customary to establish a set of goals for each kinematic and compliance (K&C) characteristic and try to find out design variables such as the location of hard points and bushing stiffness which can achieve these goals. However, since it is very difficult to find out adequate set of design variables which satisfy all the goals, many engineers should rely on their own experiences and intuitions, or repeat trial and error to design a new suspension and improve old one. In this research, we develop a suspension design process by which suspension K&C characteristic targets can be achieved systemically and automatically. For this purpose, design optimization schemes such as design of experiments (DoE) and gradient-based local optimization algorithm are adopted.
Technical Paper

Efficient Multi-Core Software Design Space Exploration for Hybrid Control Unit Integration

2014-04-01
2014-01-0260
Multi-core systems are adopted quickly in the automotive domain, Proof of concepts have been implemented for power train, body and chassis, involving hard real-time constraints. However, depending on the degree of integration, it can be costly, especially in those cases where existing single-core software has to be migrated over. Furthermore, there seems to be a high level of uncertainty, whether a found solution, with regards to partitioning, mapping and orchestration of software is close to an optimum solution. Some integrated solutions demonstrate considerably less performance, for instance due to communication overhead compared to execution on single-core systems. This paper discusses a methodology, as to how to effectively and efficiently investigate the software architecture design space for multi-core software development.
Technical Paper

Body Optimization for Front Loading Design Process

2014-04-01
2014-01-0388
An innovative design process is proposed to be applicable in the early conceptual design phase as a means of front loading design. The objective of the study is to minimize trial and errors in the detailed design phase and to shorten the overall design period. The process includes design optimization which is based on efficient modeling techniques. An integrated CAD/CAE modeling method and a simplified quality FE model are key factors in the course of effectuation. The conceptual modeling takes into account the adaptability of computer-generated models with the use of CAD/CAE integrated design environment. To achieve maximum efficiency in the repeated computations in optimization, an FE modeling approach is introduced in terms of simplicity and quality. The proposed FE modeling employs beam and spring elements to construct vehicle body models, which is targeted to produce an instant analysis result with a robust conceptual design at the incipient phase of development.
Technical Paper

An Improved Methodology for Calculation of the Inertial Resistance of Automotive Latching Systems

2014-04-01
2014-01-0544
This paper outlines an improved methodology to perform calculations to verify the compliance of automotive door latch systems to minimum legal requirements as well as to perform additional due diligence calculations necessary to comprehend special cases such as roll over crashes and locally high inertial loadings. This methodology builds on the calculation method recommended by SAE J839 and provides a robust and clear approach for application of this method to cable release systems, which were not prevalent at the time J839 was originally drafted. This method is useful in and of itself but its utility is further increased by the application of the method to a Computer Aided Design (CAD) template (in this case for Catia V5), that allows some automation of the calculation process for a given latch type. This will result in a savings of time, fewer errors and allows for an iterative concurrent analysis during the design process.
Technical Paper

A Sensor Fusion Digital-Map System for Driver Assistance

2013-04-08
2013-01-0734
A traffic situation is getting more complex in urban areas. Various safety systems of an automobile have been developed but fatal and serious accidents still can be made by driver's faults or distractions. The system supporting extend of driver's recognition area is going to be an important part of future intelligent vehicles in order to prevent accidents. In this paper we propose sensor fusion system based on a digital-map for driver assistance. The accurate localization of a host vehicle is achieved by a stereo vision sensor and a digital-map using polygon matching algorithm in urban area. A single-row laser scanner is used for tracking multiple moving objects. The coordinate transformation from sensor frame to global frame is performed to visualize the moving objects on a digital-map. An experiment was conducted in an urban canyon where the GPS signals are frequently interrupted.
Technical Paper

The Flexible EV/HEV and SOC Band Control Corresponding to Driving Mode, Driver's Driving Style and Environmental Circumstances

2012-04-16
2012-01-1016
Recently, in accordance with the increased interest of consumer in fuel efficiency due to the phenomenon of high oil price, complaints against actual fuel efficiency in the road in comparison with the certified fuel efficiency have been raised frequently. Especially in case of the hybrid vehicle which is highly popular for the reason of its high fuel efficiency compared with that of existing gasoline car, deviation in the fuel efficiency will be higher compared with that of gasoline car in accordance with the driving mode (downtown/highway), driver's driving style (wild/mild) and external environmental condition (gradient/temperature/altitude). To solve them, this paper developed a method so that the SOC (State Of Charge), EV/HEV mode transition point can be controlled variably in accordance with the driving mode, driver's driving style and external environmental condition by making the most of characteristics of hybrid.
X