Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Classification of Customer Complaints Using Deep Learning

2024-04-09
2024-01-2789
In recent years, the automotive industry has been making efforts to develop vehicles that satisfy customers’ emotions rather than malfunctions by improving the durability of vehicles. The durability and reliability of vehicles sold in the U.S. can be determined through the VDS (Vehicle Dependability Study) published by JD Power. The VDS is index which is the number of complaints per 100 units released by J.D. POWER in every year. It investigates customers who have used it for 3 years after purchasing a new car and consists of 177 specific problems grouped into 8 categories such as PT, ACEN, FCD, Exterior. The VDS-4 has been strengthened since the introduction of the new evaluation system VDS-5 in 2015. In order to improve the VDS index, it is important to gather various customer complaints such as internet data, warranty data, Enprecis data and clarify the problem and cause. Enprecis data is survey of customer complaints by on-line in terms of VDS.
Technical Paper

Analysis of Aerodynamic Characteristics of Fan-Type Wheels

2024-04-09
2024-01-2540
This research addresses the pressing need for reducing vehicle aerodynamic resistance, with a specific focus on mitigating wheel and tire resistance, which constitutes approximately 25% of the overall vehicle drag. While the prevailing method for reducing resistance in mass production development involves wheel opening reduction, it inadvertently increases wheel weight and has adverse effects on brake cooling performance. To overcome these challenges, novel complementary resistance reduction methods that can be employed in conjunction with an appropriate degree of wheel opening reduction are imperative. In this study, we introduce symmetrical wheels with a fan-like shape as a solution. The fan configuration influences the surrounding flow by either drawing it in or pushing it out, depending on the direction of rotation. Application of these fan-type wheels to a vehicle's wheels results in the redirection of flow inwards or outwards during high-speed driving due to wheel rotation.
Technical Paper

Implementation of the DADI Method into the Droplet Equation for Efficient Aircraft Icing Simulation

2023-06-15
2023-01-1465
Diagonalized alternating-direction implicit (DADI) method is implemented in the Eulerian hyperbolic droplet solver, ICEPAC, for efficient high-order accurate analysis of aircraft icing. Detailed techniques for implementing the DADI method considering hyperbolicity characteristics are discussed. For the Eulerian droplet equation system to be strictly hyperbolic, additional source terms regarding artificial droplet pressure are included. Validations of the present implicit solver are conducted using two- and three-dimensional steady benchmark tests: NACA0012 airfoil, NACA23012 airfoil, and a swept wing. Also, the oscillating airfoil SC2110 case was analyzed to verify the robustness and efficiency of the proposed solver. In addition, the computational cost of the current implicit solver is considerably lower than that of the explicit multi-stage solver.
Technical Paper

Progressive Meta-Model Based Design Optimization for Lithium-ion Battery Pack to Improve Cell Cycle Life

2023-04-11
2023-01-0512
Lithium-ion battery has advantages of high energy density and cost effectiveness than other types of batteries. However due to the low mechanical stability, their performance is strongly influenced by environmental conditions. Especially, external pressure on a cell surface is a crucial factor because an appropriate force can improve battery cycle life, but excessive force may cause structural failure. In addition, battery pack is composed of various components so that uncertainties in dimension and material properties of each component can cause a wide variance in initial pressure. Therefore, it is important to optimize structural design of battery pack to ensure initial pressure in an effective range. In this paper, target stiffness of module structure was determined based on cell level cycle life test, then structural design has been optimized for weight reduction. Cell cycling tests were performed under different stiffness conditions and analyzed with regression model.
Technical Paper

Optimization of Body D-Pillar Ring Structure

2023-04-11
2023-01-0604
The body stiffness plays a key role in vehicle performance, such as noise and vibration, ride and handling, durability and so on. In particular, a body D-pillar ring structure is the most sensitive affecting the body stiffness on vehicle with tail gate. Therefore, since D-pillar body ring structure for high stiffness and lightweight is required, an optimized design methodology that simultaneously satisfies the requirements was studied. It focused on a methodology that body engineering designers can optimize design parameters easily and quickly by themselves in the preceding stages of vehicle’s styling distribution and design conceptual planning. First, it is important to establish the body stiffness design strategy by predicting the body stiffness with the vehicle’s styling at early design stage. The methodology to predict body stiffness with the styling and body dimension specification parameters was introduced.
Technical Paper

A Study on the Improvement of Driver's Inconvenience to Ensure Driving Stability in Bad Weather Conditions

2023-04-11
2023-01-0651
Bad weather conditions such as torrential rain, heavy snow, and thick fog frequently occur worldwide. Vehicle accidents in such bad weather conditions account for a significant portion of all vehicle accidents, and the level of damage is relatively severe compared to other accidents that occur in clear weather. This paper analyzes the driver's driving stability in bad weather conditions, which has such a significant meaning, in various ways through experiments on the inconvenience experienced by the driver. In this study, three levels of bad weather conditions were implemented in a driving simulator environment to evaluate driver inconvenience for six activities. Through driving experiment, quantitative bio-signals and vehicle signals were analyzed in each weather condition. The SD survey was used to assess the driver's inconvenience level for activities performed while driving and analyze the ranking of inconvenience.
Technical Paper

Hierarchical Motion Planning and Control Algorithm of Autonomous Racing Vehicles for Overtaking Maneuvers

2023-04-11
2023-01-0698
This paper describes a hierarchical motion planning and control framework for overtaking maneuvers under racing circumstances. Unlike urban or highway autonomous driving conditions, race track driving requires longer prediction and planning horizons in order to respond to upcoming corners at high speed. In addition, the subject vehicle should determine the optimal action among possible driving modes when opponent vehicles are present. In order to meet these requirements and secure real time performance, a hierarchical architecture for decision making, motion planning, and control for an autonomous racing vehicle is proposed. The supervisor determines whether the subject vehicle should stay behind the preceding vehicle or overtake, and its direction when overtaking. Next, a high level trajectory planner generates the desired path and velocity profile in a receding horizon fashion.
Technical Paper

Development of a Built-In Type Dashboard Camera with Reliability and Usability

2022-03-29
2022-01-0111
Dashcam, which is considered essential parts of vehicles in Korea, are installed in most vehicles for proofs of accidents or threatened driving of other vehicles, and insurance premiums. Also global market is growing continuously. Aftermarket dashcams have been developed with many improvements such as higher resolution camera and a LCD, however still have technical limitations in usability and durability. The First limitation is that the dashcam which mounted on windshield can be separated and injure at an accident due to a collision impact, and the device obstructs the driver's vision. In addition, the connection of the power supply may cause a vehicle damages such as a fire due to a worker's mistake or a product defect. Secondly, in order to replay the recorded video, it is not easy to remove the SD card and check it on the computer. Moreover, since the LCD is so small, it is difficult to search and replay the wanted video from the list in many files.
Technical Paper

Body Cross-Sectional Stiffness Criteria for the Optimal Development of the BIW Weight and Torsional Stiffness

2021-04-06
2021-01-0797
Body-in-white plays a key role in protecting passengers in the event of collision between vehicles, and also endures external forces during cornering in a vehicle. Stiffness of body-in-white is the basic characteristic of a car body, and it is closely related to the full-vehicle-level performance such as body durability, ride and handling, etc. There have been many attempts to correlate body stiffness to full-vehicle-level performance, and studying the relationship between torsional body stiffness and durability has been the popular topic among others. In general, it is believed to be true that bodies with high torsional stiffness exhibit good durability performance, and in many cases this assumption seems to be verified. However, not all cases are true to this assumption. In this paper, relationship between torsional body stiffness and body durability has been closely studied.
Journal Article

Analysis of Formaldehyde Scavenger and Its Reaction Products in POM Using Mass Spectrometry

2021-04-06
2021-01-0360
To meet the indoor air quality guideline of newly manufactured vehicles in Korea, China, and other countries, low formaldehyde grade POM (Polyoxymethylene) is used for interior parts essentially. In this paper, formaldehyde scavengers from of 2 commercial low formaldehyde grade POM pellets were identified by LC-MS (Liquid chromatograph-Mass spectrometer) as sebacic dihydrazide and dodecanedioic dihydrazide respectively. The reaction products between formaldehyde and formaldehyde scavengers were also detected, which were converted from hydrazide to hydrazone. So, this kind of additive would be gradually consumed by repetitive molding process or exposure to heat according to formaldehyde emission increase. We are expecting to apply this analytical method and result for quality control and benchmark of low formaldehyde grade POM.
Journal Article

On the Aerodynamics of the Notchback Open Cooling DrivAer: A Detailed Investigation of Wind Tunnel Data for Improved Correlation and Reference

2021-04-06
2021-01-0958
Since the introduction of the DrivAer in 2012 this model has become the standard generic aerodynamic benchmark and aerodynamic research model used by automotive OEMs, software vendors and researchers. In 2017, the relevance of the DrivAer has been furthered by the inclusion of a simplified engine bay. Whilst the DrivAer has become the popular standard, the availability of detailed wind tunnel test data, a key enabler for more sophisticated aerodynamic benchmarking and research, remains limited. This paper presents a comprehensive set of wind tunnel test data of the notchback version of the Ford Open Cooling DrivAer, including aerodynamic force measurements, detailed surface pressure measurements and flow field measurements at 3 cross-sections in the vicinity of the model. In addition, the paper will discuss the sensitivity of the experimental data to wind tunnel repeatability and facility-to-facility variations.
Technical Paper

Prediction of In-Cylinder Pressure for Light-Duty Diesel Engines

2019-04-02
2019-01-0943
In recent years, emission regulations have been getting increasingly strict. In the development of engines that comply with these regulations, in-cylinder pressure plays a fundamental role, as it is necessary to analyze combustion characteristics and control combustion-related parameters. The analysis of in-cylinder pressure data enables the modelling of exhaust emissions in which characteristic temperature can be derived from the in-cylinder pressure, and the pressure can be used for other investigations, such as optimizing efficiency and emissions through controlling combustion. Therefore, a piezoelectric pressure sensor to measure in-cylinder pressure is an essential element in the engine research field. However, it is difficult to practice the installation of this pressure sensor on all engines and on-road vehicles owing to cost issues.
Technical Paper

Development of Surfactant-Free Anti-Fogging Coating for Automotive Headlamps

2019-03-25
2019-01-1439
Recently, the design of automotive headlamps has become diversified and complicated according to customer needs. Hence, structural complexity of the headlamps has also increased. Complex structure of the headlamps inevitably causes a disturbance in air circulation. For this reason, inadvertent micro-sized water droplets, called fogging, are condensed on the inner surface of headlamp lens due to temperature difference between the inner and outer lens surfaces. To circumvent fogging inside of the headlamp lens, an anti-fogging coating is indispensable. Conventionally, diverse surfactants have been adopted as substantial material for the anti-fogging coating. However, the usage of the surfactants causes undesirable side effect such as water mark arising from vapor condensation, which is an important issue that must be fully resolved. In this study, we developed an innovative anti-fogging coating material without using conventional surfactant.
Journal Article

Development of Spalling Estimation Model for Ball-Type Constant Velocity Joints

2019-03-25
2019-01-1431
In this study, the spalling issue in ball-type Constant Velocity Joints (CVJ) was investigated. As one of the most common types of outboard CVJ, a ball-type CVJ has spalling problems caused by fatigue at the internal contact points. It causes noise and vibration in vehicles, which results in CVJ failures. This study provides a spalling-estimation model for a ball-type CVJ, which was developed by the following five steps. First, the relative coordinates of the internal contact points between each component were established by forward kinematics. Second, the acting forces were calculated according to the results of the relative coordinate analyses and the vehicle driving conditions, and then normal pressure at the contact points was derived by Hertz contact theory. Third, the maximum sliding speeds at the contact points were also calculated using slip motion analyses. These normal pressure and maximum sliding speeds were used to estimate the shear stresses at the contact points.
Technical Paper

Impact of Grid Density on the LES Analysis of Flow CCV: Application to the TCC-III Engine under Motored Conditions

2018-04-03
2018-01-0203
Large-eddy simulation (LES) applications for internal combustion engine (ICE) flows are constantly growing due to the increase of computing resources and the availability of suitable CFD codes, methods and practices. The LES superior capability for modeling spatial and temporal evolution of turbulent flow structures with reference to RANS makes it a promising tool for describing, and possibly motivating, ICE cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Despite the growing interest towards LES in the academic community, applications to ICE flows are still limited. One of the reasons for such discrepancy is the uncertainty in the estimation of the LES computational cost. This in turn is mainly dependent on grid density, the CFD domain extent, the time step size and the overall number of cycles to be run. Grid density is directly linked to the possibility of reducing modeling assumptions for sub-grid scales.
Technical Paper

A Development of Fuel Saving Driving Technique for Parallel HEV

2018-04-03
2018-01-1006
This paper examines the effect of pulse-and-glide (PnG) driving strategies on the fuel efficiency when applied on parallel HEVs. Several PnG strategies are proposed, and these include the electrical, mechanical, and combined PnG strategies. The electrical PnG strategy denotes the hybrid powertrain control tactics in which the battery is charged or discharged according to the power demanded while maintaining the constant vehicle speed. On the other hand, the mechanical PnG strategy denotes the powertrain control tactics in which the vehicle accelerates or decelerates according to the power load while minimizing the battery usage. The combined PnG strategy involves both electrical and mechanical strategies to find a balanced point in between them. Here, a tradeoff relationship between the fuel efficiency and the vehicle drivability related to the tracking performance of the desired target speed is revealed.
Technical Paper

Development of Parallel and Direct Cooling System for EV/FCEV Inverter

2018-04-03
2018-01-0454
This paper presents the direct liquid-cooled power module with the circular pin fin which is the inverter parallel cooling system for high output EV/FCEV. The direct cooling system of a conventional inverter is designed to supply coolant along the direction in which the heating element such as Si-chip is disposed and discharge coolant to the opposite side. In case of the inverter, the higher the output is, the larger temperature difference between inlet and outlet becomes due to the heat exchange of the heat generation element, so that temperature difference depends on the position of Si-chip. Since lifetime is judged on the basis of maximum temperature of Si-chip, the inverter itself must be replaced or discarded due to durability of the inverter even though Si-chip can drive further. The simple way to solve this problem is to increase cooling flow rate, but this leads to excessive increase in pressure loss due to circular pin fin.
Technical Paper

Improvement of Tire Development Process Through Study of Tire Test Procedure and Vehicle Correlation

2018-04-03
2018-01-1337
The tire is the vital element in vehicle dynamics, as its contact patch transmits all forces and moments to the ground (accelerating, braking, cornering, rolling).Over the recent decades tire development for passenger cars has been continuously improved and optimized in order to achieve a good overall vehicle performance in R&H that is in balance with all other tire performances (Wear, Durability, NVH, RR, Miles). This general development process has to be suitable for various vehicle types from regular passenger cars over eco-friendly hybrid or electric vehicles to high performance sport cars. The balance between Ride and Handling performance is further adjusted to local customer preferences that are usually distinguished by markets (US, EU, Asia). The tire development process, which is embedded in the overall vehicle development, is usually realized in a mutual collaboration between OEM and tire supplier.
Journal Article

Development of Standardized Battery Pack for Next-Generation PHEVs in Considering the Effect of External Pressure on Lithium-Ion Pouch Cells

2018-04-03
2018-01-0439
The performance and marketability of eco-friendly vehicles highly depend on their high-voltage battery system. Lithium-ion pouch cells have advantages of high energy density and cost-effectiveness than other types of batteries. However, due to their low mechanical stability, their characteristics are strongly influenced by external conditions. Especially, external pressure on pouch cell is a crucial factor for the performance, life cycle, and structural safety of battery pack. Therefore, optimizing pressure level has been a critical consideration in designing battery pack structures for lithium-ion pouch cell. In this work, we developed an optimized structure of the battery module and pack to apply appropriate pressure on pouch cells. They also include a standardization strategy to meet the varied demand in capacity and power for automotive application.
Technical Paper

A Study on the Refinement of Turbulence Intensity Prediction for the Estimation of In-Cylinder Pressure in a Spark-Ignited Engine

2017-03-28
2017-01-0525
The role of 1D simulation tool is growing as the engine system is becoming more complex with the adoption of a variety of new technologies. For the reliability of the 1D simulation results, it is necessary to improve the accuracy and applicability of the combustion model implemented in the 1D simulation tool. Since the combustion process in SI engine is mainly determined by the turbulence, many models have been concentrating on the prediction of the evolution of in-cylinder turbulence intensity. In this study, two turbulence models which can resemble the turbulence intensity close to that of 3D CFD tool were utilized. The first model is dedicated to predicting the evolution of turbulence intensity during intake and compression strokes so that the turbulence intensity at the spark timing can be estimated properly. The second model is responsible for predicting the turbulence intensity of burned and unburned zone during the combustion process.
X