Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

NOx Trap Catalyst Technologies to Attain 99.5% NOx Reduction Efficiency for Lean Burn Gasoline Engine Application

2009-04-20
2009-01-1077
For fuel economy improvement by lean-burn gasoline engines, extension of their lean operation range to higher loads is desirable as more fuel is consumed during acceleration. Urgently needed therefore is development of emission control systems having as high NOx conversion efficiency as three-way catalysts (TWC) even with more frequent lean operation. The authors conducted a study using catalysts loaded with potassium (K) as the only NOx trapping agent in an emission control system of a lean-burn gasoline engine.
Technical Paper

New Lambda - Lambda Air-Fuel Ratio Feedback Control

2007-04-16
2007-01-1340
Previously air-fuel ratio control using a λ O2 sensor had two problems which resulted from the binary output characteristics: (1) Insufficient convergence performance after A/F disturbance, resulting in worsening of emissions in transient states, and (2) A narrow A/F control range, resulting in worsening of emissions due to mean A/F shift in the front A/F. However, we have executed a paradigm shift to mean A/F control focused on the O2 storage ability of the catalyst and on the conversion characteristics, and carried out the following improvements. (1) Using a catalyst O2 storage model, we analyzed the interaction among front A/F feedback, O2 storage behavior, the rear. O2 signal, and emissions. Based on the results of this analysis, we designed an optimal O2 storage capacity (OSC) using a new catalyst with improved O2 storage ability, and verified that the first problem was resolved. (2) Previously, it was difficult to design front λ O2 control due to its strong non-linearity.
Technical Paper

Advanced Emission Control Technologies for PM Reduction in Heavy-Duty Applications

2003-05-19
2003-01-1862
1 In this paper results obtained with different particulate matter (PM) reduction technologies are presented. Diesel oxidation catalysts (DOC) are well known as a reliable PM reduction technology which can efficiently remove the soluble organic fraction (SOF) but which has no effect on the solid particles in PM. A drawback is that in combination with high sulfur fuel, oxidation of SO2 to SO3 by the DOC can occur, resulting in an increase of PM emissions. An alternative technology that is proven to significantly reduce soot emissions comprises diesel particulate wall-flow filters. High filtration efficiencies of up to 90% and beyond are feasible. The main obstacle is the combustion of the trapped soot. As shown in this paper, the application of a catalyst coating to the filter aids the filter regeneration by lowering the balance-point temperature. The main disadvantages of wall-flow filters are an increase in back-pressure and possible plugging caused by oil-ash accumulations.
Technical Paper

Aftertreatment Catalyst Design for the New DaimlerChrysler Supercharged 4-Cylinder Engine with Direct Gasoline Injection

2003-03-03
2003-01-1161
The launching of direct injection gasoline engines is currently one of the major challenges for the automotive industry in the European Union. Besides its potential for a notable reduction of fuel consumption, the engine with direct gasoline injection also offers increased power during stoichiometric and stratified operation. These advantages will most probably lead to a significant market potential of the direct injection concept in the near future. In order to meet the increasingly more stringent European emission levels (EURO IV), new strategies for the exhaust gas aftertreatment are required. The most promising technique developed in recent years, especially for NOx conversion in lean exhaust gases, is the so-called NOx storage catalyst.
Technical Paper

Exhaust Gas Aftertreatment of Volkswagen FSI Fuel Stratified Injection Engines

2002-03-04
2002-01-0346
For substantial reduction of fuel consumption of their vehicle fleet, Volkswagen AG has decided to develop spark-ignition engines with direct fuel injection. To launch this new engine concept with stratified lean operation mode while at the same time meeting the stringent EU IV emission standards, it was necessary to develop a suitable exhaust gas aftertreatment system. This was achieved as part of an intensive co-operation between Volkswagen AG and OMG, formerly dmc2 Degussa Metals Catalysts Cerdec AG. The paper describes the demands for exhaust gas aftertreatment due to lean burn operation. In addition the main development steps of the exhaust gas aftertreatment system for Volkswagen FSI engines and catalyst durability over vehicle lifetime are discussed. Focus is laid on the catalyst system design and coating variations. Volkswagen developed a new closed-loop emission control management system which uses NOx-sensor signals for the first time worldwide.
Technical Paper

A System(atic) Approach towards Low Precious Metal Three-Way Catalyst Application

2002-03-04
2002-01-0345
Future three way catalyst systems are expected to consist of a relatively small start catalyst and a larger volume underfloor catalyst. The main role of the start catalyst is to provide rapid light off. For this purpose, the start catalyst requires relatively small volume with high precious metal loading. Computer simulation is employed to optimize the start catalyst volume with respect to light off performance and precious metal cost. The main role of the underfloor catalyst is NOx removal at elevated temperatures and high space velocities. Due to its large volume, substantial precious metal savings can be realized by the design of a low precious metal underfloor catalyst. The present study focuses on a systematic understanding of NOx breakthrough in three-way catalysts. Special emphasis is on the interaction of the catalyst and the engine management system, especially the lambda control.
Technical Paper

Utilization of Advanced Three-Way Catalyst Formulations on Ceramic Ultra Thin Wall Substrates for Future Legislation

2002-03-04
2002-01-0349
The LEV II and SULEV/PZEV emission standards legislated by the US EPA and the Californian ARB will require continuous reduction in the vehicles' emission over the next several years. Similar requirements are under discussion in the European Union (EU) in the EU Stage V program. These future emission standards will require a more efficient after treatment device that exhibits high activity and excellent durabilty over an extended lifetime. The present study summarizes the findings of a joint development program targeting such demanding future emission challenges, which can only be met by a close and intensive co-operation of the individual expert teams. The use of active systems, e.g. HC-adsorber or electrically heated light-off catalysts, was not considered in this study. The following parameters were investigated in detail: The development of a high-tech three-way catalyst technology is described being tailored for applications on ultra thin wall ceramic substrates (UTWS).
Technical Paper

Study of TWC in NOx Adsorber Catalyst System for Gasoline Direct Injection Engine

2001-03-05
2001-01-1300
Extensive research and development has been performed to develop the NOx-adsorber catalytic system, which would make Mitsubishi vehicles powered by the gasoline direct-injection (GDI™) engines comply with European Stage 4 emissions regulations. This NOx-adsorber catalytic system is a three-brick configuration, consisting of a three-way catalyst in the front (the front catalyst) and the rear catalytic converter, composed of a new NOx-adsorber catalyst and a conventional three-way catalyst (TWC). In the present research work, a special effort has been made to define the required performance of the front catalyst, particularly with HC reduction efficiency at the cold start, the steady-state leaner A/F and the transient phase of the A/F from leaner to stoichiometric. For HC reduction, it has been found that platinum (Pt) had the highest HC efficiency.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
Technical Paper

Hydrocarbon DeNOx Catalysis - System Development for Diesel Passenger Cars and Trucks

1999-03-01
1999-01-0109
1 In recent years Diesel DeNOx catalysts using additional hydrocarbons as reducing agents have been the focus of exhaust aftertreatment. The NOx reduction potential was often limited to 20 - 30 % in the European MVEG-A or the US FTP cycle by just adding a DeNOx catalyst on a vehicle. This result is explained by the fact that the catalyst was treated as a separate item and that the emission reduction strategy was not developed in a system approach. This paper summarizes results regarding the potential of state of the art Diesel DeNOx catalysts fitted to passenger cars and trucks when the exhaust gas system is optimized as a whole. The easiest way for a system approach is the combination of DeNOx catalysts with different working temperatures for NOx reduction. This has been demonstrated by the usage of several base metal catalysts for heavy duty applications. For passenger cars Platinum containing catalysts are strongly favored.
Technical Paper

Emission Control Systems for Two Stroke Engines - A Challenge for Catalysis=

1998-10-19
982710
The exhaust emissions of two stroke vehicles like motorbikes and scooters contribute to the pollution in urban areas of developing countries in South East Asia and India to a major extent. But also in Japan and selected European countries exhaust gas limitations become effective from 10/1998 and 06/1999 for these vehicles. To control this emissions catalytic aftertreatment by Hot Tubes® and/or monolith type catalysts are applied. Due to the constant rich operation of the two-stroke engines, common design criteria for three-way catalysts fail. Extremely high exhaust gas hydrocarbon concentrations lead to high exotherms during oxidation which increases the exhaust gas temperature to a range between 800 and 900 °C. Furthermore the lack of oxygen limits the CO and HC oxidation under certain engine operation conditions. Therefore, water-gas shift and steam reforming reactions play an important part in catalytic aftertreatment of two-stroke exhausts.
Technical Paper

Diesel Particulate Emissions of Passenger Cars - New Insights into Structural Changes During the Process of Exhaust Aftertreatment Using Diesel Oxidation Catalysts

1998-02-23
980196
Diesel particulate mass emissions and their corresponding size distributions have been investigated on a diesel passenger car at steady state conditions using standard filters and a cascade impactor. These tests have been carried out at two different engine operating conditions (2100 rpm, 2.7 and 13.3 kW, respectively) corresponding to low and high exhaust gas temperatures. Two diesel fuels differing in their sulfur content (150 ppm and 2500 ppm S) have been used for these investigations. The particulate size distribution after diesel oxidation catalyst was found to be affected by the sulfur content of the diesel fuel and by the exhaust gas temperature. Interpretations of these results on a mechanistic basis are given. The diesel particulate emission studies have been extended to dynamic vehicle tests.
Technical Paper

Development of Oxidation and de-NOx Catalyst for High Temperature Exhaust Diesel Trucks

1998-02-01
981196
SOF and de-NOx catalysts are applied to heavy-duty diesel trucks which are regulated by European 13 mode or Japanese 13 mode cycles. Precious metal free catalysts can reduce SOF at low temperatures without increasing sulfates up to 670C. This catalyst shows little deterioration after 400 hours of high temperature engine aging. 32% PM and 47% SOF reduction is observed under 13 mode tests when the exhaust gas temperature exceeds 700C (ECE-13 mode). This precious metal free catalyst is suitable for diesel trucks, especially trucks with natural aspirating engine whose exhaust gas temperature is very high. De-NOx catalysts with a 300-500C NOx reduction temperature window are applied to the Japanese heavy-duty test cycle (Japan 13 mode). When secondary diesel fuel is added under modes 8 to 12, (secondary fuel addition only when catalyst inlet temperature is more than 300C), 19-25% NOx can be reduced with 2-4% fuel penalty.
X