Refine Your Search

Topic

Search Results

Technical Paper

CARB Off-Road Low NOx Demonstration Program - Engine Calibration and Initial Test Results

2024-04-09
2024-01-2130
Off-road diesel engines remain one of the most significant contributors to the overall oxides of nitrogen (NOX) inventory and the California Air Resources Board (CARB) has indicated that reductions of up to 90% from current standards may be necessary to achieve its air quality goals. In recognition of this, CARB has funded a program aimed at demonstrating emission control technologies for off-road engines. This program builds on previous efforts to demonstrate Low NOX technologies for on-road engines. The objective was to demonstrate technologies to reduce tailpipe NOX and particulate matter (PM) emissions by 90 and 75%, respectively, from the current Tier 4 Final standards. In addition, the emission reductions were to be achieved while also demonstrating a 5 to 8.6% carbon dioxide (CO2) reduction and remaining Greenhouse Gas (GHG) neutral with respect to nitrous oxide (N2O) and methane (CH4).
Technical Paper

System Level Simulation of H2 ICE after Treatment System

2024-04-09
2024-01-2625
Hydrogen Internal Combustion Engines (H2 ICE) are gaining recognition as a nearly emission-free alternative to traditional ICE engines. However, H2 ICE systems face challenges related to thermal management, N2O emissions, and reduced SCR efficiency in high humidity conditions (15% H2O). This study assesses how hydrogen in the exhaust affects after-treatment system components for H2 ICE engines, such as Selective Catalytic Reduction (SCR), Hydrogen Oxidation Catalyst (HOC), and Ammonia Slip Catalyst (ASC). Steady-state experiments with inlet H2 inlet concentrations of 0.25% to 1% and gas stream moisture levels of up to 15% H2O were conducted to characterize the catalyst response to H2 ICE exhaust. The data was used to calibrate and validate system component models, forming the basis for a system simulation.
Technical Paper

Analysis of overcharge tolerance of aged LMO cells with Examples

2023-09-29
2023-32-0108
The capacity of a lithium-ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms associated with unwanted side reactions that occur in these batteries. The same reactions occur during overcharge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. As the battery ages the accuracy of state of charge prediction decreases and vulnerability to persistent overcharge increases. Moreover, as the battery ages, its tolerance to such unintended overcharge changes. This tolerance depends on the nature of the history of cycle and calendar aging. A map of this tolerance in the BMS can provide awareness of the factor of safety due to overcharge as battery ages. Signatures of early warning signs of incipient thermal runaway due to overcharge can also be very useful features in a BMS.
Technical Paper

Impact of Lateral Alignment for Cooling Airflow during Heavy-Truck Platooning

2021-04-06
2021-01-0231
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the thermal control/heat rejection system sensitivity to intentional lateral offsets over a range of intervehicle spacings. Previous studies have shown the following vehicle can experience elevated temperatures and reduced airflow through the cooling package as a result of close-formation platooning. Four anemometers positioned across the grille of the following trucks as well as aligned and multiple offset positions are used to evaluate the sensitivity of the impact. Straight sections of the track are isolated for the most accurate airflow impact measurements and to be most representative of on-highway driving. An intentional lateral offset in truck platooning is considered as a controls approach to mitigate reduced cooling efficacy at close following scenarios where the highest platoon savings are achieved.
Technical Paper

A Comprehensive Numerical Approach to Predict Thermal Runaway in Li-Ion Battery Packs

2021-04-06
2021-01-0748
With the increasing level of electrification of on-road, off-road and stationary applications, use of larger lithium-ion battery packs has become essential. These packs require large capital investments on the order of millions of dollars and pose a significant risk of self-annihilation without rigorous safety evaluation and management. Testing these larger battery packs to validate design changes can be cost prohibitive. A reliable numerical simulation tool to predict battery thermal runaway under various abuse scenarios is essential to engineer safety into the battery pack design stage. A comprehensive testing & simulation workflow has been established to calibrate and validate the numerical modeling approach with the test data for each of the individual sub model - electrochemical, internal short circuit and thermal abuse model. A four-equation thermal abuse model was built and validated for lithium-ion 21700 form factor cylindrical cells using NCA cathodes.
Technical Paper

Oil Consumption Pathway Impact on SCR-on-Filter Functional Performance and Lubricant Derived Ash Characteristics

2021-04-06
2021-01-0578
SCR-on-filter, or SCRoF, is an emerging technology for different market segments and vehicle applications. The technology enables simultaneous particulate matter trapping and NOX reduction, and provides thermal management and aftertreatment packaging benefits. However, there is little information detailing the lubricant derived exposure effects on functional SCR performance. A study was conducted to evaluate the impact of various oil consumption pathways on a light duty DOC and SCRoF aftertreatment system. This aftertreatment system was aged utilizing an engine test bench modified to enable increased oil consumption rates via three unique oil consumption pathways. The components were characterized for functional SCR performance, ash morphology, and ash deposition characteristics. This included utilizing techniques, such as SEM / EDS, to evaluate the ash structures and quantify the ash elemental composition.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Technical Paper

CARB Low NOx Stage 3 Program - Modified Engine Calibration and Hardware Evaluations

2020-04-14
2020-01-0318
With the conclusion of the California Air Resources Board (CARB) Stage 1 Ultra-Low NOX (ULN) program, there continues to be a commitment for identifying potential pathways to demonstrate 0.02 g/bhp-hr NOX emissions. The Stage 1 program focused on achieving the ULN levels on the heavy-duty regulatory cycles utilizing a turbo-compound engine which required the integration of novel catalyst technologies and a supplemental heat source. While the aftertreatment configuration provided a potential solution to meet the ULN target, a complicated approach with a greenhouse gas (GHG) penalty was required to overcome challenges from low temperature exhaust. A subsequent Stage 2 program was concerned with the development of a new low load test cycle and evaluating the trade-off between GHG and tailpipe NOX on the Stage 1 ULN solution.
Technical Paper

Total Thermal Management of Battery Electric Vehicles (BEVs)

2018-05-30
2018-37-0026
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs.
Technical Paper

Development of 80- and 100- Mile Work Day Cycles Representative of Commercial Pickup and Delivery Operation

2018-04-03
2018-01-1192
When developing and designing new technology for integrated vehicle systems deployment, standard cycles have long existed for chassis dynamometer testing and tuning of the powertrain. However, to this day with recent developments and advancements in plug-in hybrid and battery electric vehicle technology, no true “work day” cycles exist with which to tune and measure energy storage control and thermal management systems. To address these issues and in support of development of a range-extended pickup and delivery Class 6 commercial vehicle, researchers at the National Renewable Energy Laboratory in collaboration with Cummins analyzed 78,000 days of operational data captured from more than 260 vehicles operating across the United States to characterize the typical daily performance requirements associated with Class 6 commercial pickup and delivery operation.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - Thermal Management Strategies

2017-03-28
2017-01-0954
The most recent 2010 emissions standards for heavy-duty engines have established a tailpipe limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, it is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
Technical Paper

Modeling Control Strategies and Range Impacts for Electric Vehicle Integrated Thermal Management Systems with MATLAB/Simulink

2017-03-28
2017-01-0191
The National Renewable Energy Laboratory’s (NREL’s) CoolSim MATLAB/Simulink modeling framework was used to explore control strategies for an electric vehicle combined loop system. Three system variants of increased complexity and efficiency were explored: a glycol-based positive temperature coefficient heater (PTC), PTC with power electronics and electric motor (PEEM) waste heat recovery, and PTC with PEEM waste heat recovery plus heat pump versions. Additionally, the benefit of electric motor preheating was considered. A two-level control strategy was developed where the mode selection and component control were treated separately. Only the parameters typically available by vehicle sensors were used to control the system. The control approach included a mode selection algorithm and controllers for the compressor speed, cabin blower flow rate, coolant flow rate, and the front-end heat exchanger coolant bypass rate.
Journal Article

Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling

2016-04-05
2016-01-0258
Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them.
Journal Article

Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather

2016-04-05
2016-01-0262
When operated, the cabin climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all-electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the vehicle climate control system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward grid-connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort.
Technical Paper

MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems

2016-04-05
2016-01-0230
The National Renewable Energy Laboratory’s (NREL’s) CoolSim MATLAB/Simulink modeling framework was expanded by including a newly developed coolant loop solution method aimed at reducing the simulation effort for complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided by MAHLE Inc. and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2°C and 43°C.
Journal Article

Combined Fluid Loop Thermal Management for Electric Drive Vehicle Range Improvement

2015-04-14
2015-01-1709
Electric drive vehicles (EDVs) have complex thermal management requirements not present in conventional vehicles. In addition to cabin conditioning, the energy storage system (ESS) and power electronics and electric motor (PEEM) subsystems also require thermal management. Many current-generation EDVs utilize separate cooling systems, adding both weight and volume, and lack abundant waste heat from an engine for cabin heating. Some use battery energy to heat the cabin via electrical resistance heating, which can result in vehicle range reductions of 50% under cold ambient conditions. These thermal challenges present an opportunity for integrated vehicle thermal management technologies that reduce weight and volume and increase cabin heating efficiency. Bench testing was conducted to evaluate a combined fluid loop technology that unifies the cabin air-conditioning and heating, ESS thermal management, and PEEM cooling into a single liquid coolant-based system.
Technical Paper

Will Your Battery Survive a World With Fast Chargers?

2015-04-14
2015-01-1196
Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and to quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios.
Technical Paper

Modeling of an Electric Vehicle Thermal Management System in MATLAB/Simulink

2015-04-14
2015-01-1708
Electric vehicles (EVs) need highly optimized thermal management systems to improve range. Climate control can reduce vehicle efficiency and range by more than 50%. Due to the relative shortage of waste heat, heating the passenger cabin in EVs is difficult. Cabin cooling can take a high portion of the energy available in the battery. Compared to internal combustion engine-driven vehicles, different heating methods and more efficient cooling methods are needed, which can make EV thermal management systems more complex. More complex systems typically allow various alternative modes of operation that can be selected based on driving and ambient conditions. A good system simulation tool can greatly reduce the time and expense for developing these complex systems. A simulation model should also be able to efficiently co-simulate with vehicle simulation programs, and should be applicable for evaluating various control algorithms.
Technical Paper

Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

2015-04-14
2015-01-0355
Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all-electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation.
Technical Paper

Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks

2014-04-01
2014-01-0680
Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation.
X