Refine Your Search

Topic

Author

Search Results

Technical Paper

Material Modelling of Lamination Stack in Electric Machines

2024-04-09
2024-01-2745
The rotor and stator of electric motors consist of multiple materials, of which steel forms the majority of mass and volume. Steel in electric motors is commonly in the form of thin sheets (laminations), stacked along the axis of the rotor. The structural integrity of such a stack can be ensured using bolting, welding or bonding of the laminations. Predictive mechanical finite element simulations of these laminated stacks can become computationally intense because the steel sheets are thin, and the motor often contains hundreds of them. If the laminations are modelled individually, the size of the elements is very small compared to the overall dimensions and the interface between the laminations need to be modelled as well. In this paper, we present an alternate method of modelling this laminated stack as a single solid body using homogeneous and orthotropic material property, instead of representing each lamination.
Technical Paper

Virtual Evaluation of PM Rotor Failure Modes and Magnet Adhesive Debonding with Cohesive Interface Approach

2024-04-09
2024-01-2725
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements gives rise to the need for increased efficiency and power density of the motors in the Electric Drive Unit (EDU). Internal Permanent Magnet (IPM) motor is one of the best suited options in such scenarios because of its primary advantages of higher efficiency and precise control over torque and speed. In the IPM motor, permanent magnets are mounted within the rotor body to produce a resultant rotating magnetic field with the 3-phase AC current supply in the stator. IPM configuration provides structural integrity and high dynamic performance as the magnets are inserted within the rotor body. Adhesive glue is used to install the magnets within the laminated stack of rotor.
Journal Article

The Aerodynamic Development of the New Range Rover Evoque

2022-03-29
2022-01-0890
The Range Rover Evoque is a compact luxury SUV, first introduced by Land Rover in 2012. Almost 800,000 units of the first-generation vehicle were sold. This paper explores some of the challenges entailed in developing the next generation of this successful product, maintaining key design cues while at the same time improving its aerodynamic efficiency. A development approach is outlined that made use of both numerical simulation and full-scale moving ground wind tunnel testing. A drag coefficient of 0.32 was obtained for the best derivative by paying particular attention to: the integration of active grille shutters; the front bumper and tyre package; brake cooling; underfloor design; wake control strategy; and detail optimization. This approach delivered the most aerodynamic Range Rover at the time of its introduction. The impact of these design changes on the aerodynamic flow field and consequently drag is highlighted.
Journal Article

Investigation of Wave Stripping Models on a Generic Wing-Mirror Using a Coupled Level-Set Volume of Fluid Simulation

2020-04-14
2020-01-0682
Predicting Exterior Water Management is important for developing vehicles that meet customer expectations in adverse weather. Fluid film methods, with Lagrangian tracking, can provide spray and surface water simulations for complex vehicle geometries in on-road conditions. To cope with this complexity and provide practical engineering simulations, such methods rely on empirical sub-models to predict phenomena such as the film stripping from the surface. Experimental data to develop and validate such models is difficult to obtain therefore here a high-fidelity Coupled Level-set Volume of Fluid (CLSVOF) simulation is carried out. CLSVOF resolves the interface of the liquid in three dimensions; allowing direct simulation of film behaviour and interaction with the surrounding air. This is used to simulate a simplified wing-mirror, with air flow, on which water is introduced.
Journal Article

A Computational Process to Effectively Design Seals for Improved Wind Noise Performance

2019-06-05
2019-01-1472
The ability to assess noise transmitted through seals to cabin interiors early in the design process is very important for automotive manufacturers. When a seal design is inadequate, the noise transmitted can dominate the interior noise, making the wind noise performance of the vehicle unacceptable. This can cause launch delays, increasing costs and risking loss of sales. Designing seals using conventional experimental processes is challenging, since the location and strength of flow noise sources are not known when the seal design is planned. Making changes to the seal system after the tooling stage is expensive for manufacturers as tooling and redesign costs can be considerable. Deliberate overdesign by adding multiple layers of seals in a wide range of locations also can reduce profit by unnecessarily raising part and manufacturing costs.
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Journal Article

Off-Road Tire-Terrain Interaction: An Analytical Solution

2016-09-27
2016-01-8029
A novel semi-analytical solution has been developed for the calculation of the static and dynamic response of an off road tire interacting with a deformable terrain, which utilizes soil parameters independent of the size of the contact patch (size-independent). The models involved in the solution presented, can be categorized in rigid and/or pneumatic tires, with or without tread pattern. After a concise literature review of related methods, a detailed presentation of the semi-analytical solution is presented, along with assumptions and limitations. A flowchart is provided, showing the main steps of the numerical implementation, and various test cases have been examined, characterized in terms of vertical load, tire dimensions, soil properties, deformability of the tire, and tread pattern. It has been found that the proposed model can qualitatively capture the response of a rolling wheel on deformable terrain.
Technical Paper

Robust Application of CBE and OBE for Engine Testing System Diagnosis

2016-04-05
2016-01-0987
Tightening emissions regulations are driving increasing focus on both equipment and measurement capabilities in the test cell environment. Customer expectations are therefore rising with respect to data uncertainty. Key critical test cell parameters such as load, fuel rate, air flow and emission measurements are more heavily under scrutiny and require real time methods of verification over and above the traditional test cell calibration in 40CFR1065 regulation. The objective of this paper is to develop a system to use a carbon dioxide (CO2) based balance error and an oxygen (O2) based balance error for diagnosing the main measurement system error in the test cell such as fuel rate meter, air flow meter, emission sample line, pressure transducer and thermocouples. The general combustion equation is used to set up the balance equations with assumptions. To validate the air fuel ratio balance model an experimental investigation was carried out for D2 5 mode and C1 8 mode cycle test.
Technical Paper

Passengers vs. Battery: Calculation of Cooling Requirements in a PHEV

2016-04-05
2016-01-0241
The power demand of air conditioning in PHEVs is known to have a significant impact on the vehicle’s fuel economy and performance. Besides the cooling power associated to the passenger cabin, in many PHEVs, the air conditioning system provides power to cool the high voltage battery. Calculating the cooling power demands of the cabin and battery and their impact on the vehicle performance can help with developing optimum system design and energy management strategies. In this paper, a representative vehicle model is used to calculate these cooling requirements over a 24-hour duty cycle. A number of pre-cooling and after-run cooling strategies are studied and effect of each strategy on the performance of the vehicle including, energy efficiency, battery degradation and passenger thermal comfort are calculated. Results show that after-run cooling of the battery should be considered as it can lead to significant reductions in battery degradation.
Technical Paper

Numerical Investigation of GDI Injector Nozzle Geometry on Spray Characteristics

2015-09-01
2015-01-1906
The large eddy simulation (LES) with Volume of Fluid (VOF) interface tracking method in Ansys-FLUENT has been used to study the effects of nozzle hole geometrical parameters on gasoline direct injection (GDI) fuel injectors, namely the effect of inner hole length/diameter (L/D) ratio and counter-bore diameters on near field spray characteristics. Using iso-octane as a model fuel at the fuel injection pressure of 200 bar, the results showed that the L/D ratio variation of the inner hole has a more significant influence on the spray characteristics than the counter-bore diameter variation. Reducing the L/D ratio effectively increases the mass flow rate, velocity, spray angle and reduces the droplet size and breakup length. The increased spray angle results in wall impingements inside the counter-bore cavity, particularly for L/D=1 which can potentially lead to increased deposit accumulation inside fuel injectors.
Journal Article

Analytical and Developmental Techniques Utilized in the Structural Optimization of a New Lightweight Diesel Engine

2015-06-15
2015-01-2298
Jaguar Land Rover (JLR) has designed and developed a new inline 4 cylinder engine family, branded Ingenium. In addition to delivering improved emissions and fuel economy over the outgoing engine, another key aim from the outset of the program was to reduce the combustion noise. This paper details the NVH development of the lead engine in this family, a 2.0 liter common rail turbo diesel. The task from the outset of this new program was to reduce the mass of the engine by 21.5 kg, whilst also improving the structural attenuation of the engine by 5 dB in comparison to the outgoing engine. Improving the structural attenuation by 5 dB was not only a key enabler in reducing combustion noise, but also helped to achieve a certified CO2 performance of 99 g/km in the all-new Jaguar XE model, by allowing more scope for increasing cylinder pressure forcing without compromising NVH.
Journal Article

SuperGen on Ultraboost: Variable-Speed Centrifugal Supercharging as an Enabling Technology for Extreme Engine Downsizing

2015-04-14
2015-01-1282
The paper discusses investigations into improving the full-load and transient performance of the Ultraboost extreme downsizing engine by the application of the SuperGen variable-speed centrifugal supercharger. Since its output stage speed is decoupled from that of the crankshaft, SuperGen is potentially especially attractive in a compound pressure-charging system. Such systems typically comprise a turbocharger, which is used as the main charging device, compounded at lower charge mass flow rates by a supercharger used as a second boosting stage. Because of its variable drive ratio, SuperGen can be blended in and out continuously to provide seamless driveability, as opposed to the alternative of a clutched, single-drive-ratio positive-displacement device. In this respect its operation is very similar to that of an electrically-driven compressor, although it is voltage agnostic and can supply other hybrid functionality, too.
Journal Article

A New De-throttling Concept in a Twin-Charged Gasoline Engine System

2015-04-14
2015-01-1258
Throttling loss of downsized gasoline engines is significantly smaller than that of naturally aspirated counterparts. However, even the extremely downsized gasoline engine can still suffer a relatively large throttling loss when operating under part load conditions. Various de-throttling concepts have been proposed recently, such as using a FGT or VGT turbine on the intake as a de-throttling mechanism or applying valve throttling to control the charge airflow. Although they all can adjust the mass air flow without a throttle in regular use, an extra component or complicated control strategies have to be adopted. This paper will, for the first time, propose a de-throttling concept in a twin-charged gasoline engine with minimum modification of the existing system. The research engine model which this paper is based on is a 60% downsized 2.0L four cylinder gasoline demonstrator engine with both a supercharger and turbocharger on the intake.
Technical Paper

Effects of Charging System Variability on the Performance and Fuel Economy of a Supercharged Spark-Ignition Engine

2015-04-14
2015-01-1286
The paper discusses the effects of various charging system technologies on the performance and fuel consumption of a modern supercharged engine, the Jaguar Land Rover AJ126 3.0 litre V6. The goal of the project was to improve performance and reduce the fuel consumption of the standard engine by researching new technologies around the supercharger. As standard the AJ126 engine uses an Eaton R1320 supercharger with a fixed ratio drive from the crankshaft and no clutch.
Technical Paper

The Use of Intumescent Coatings with Polymer Composites for High Temperature Automotive Applications

2015-04-14
2015-01-0713
To meet corporate CO2 emission targets polymer composites are being explored for light-weighting vehicle applications. Operational requirements may demand that such materials function above glass transition temperatures or heat deflection points. Intumescent coatings are traditionally used in construction to protect steelwork during fire. This paper presents a novel experimental investigation of two intumescent technologies to thermally protect a reinforced polyamide, for use as a semi-structural vehicle component. Coatings were assessed against the thermal requirement to withstand 500°C for 10 minutes. The differences in performance observed between water and epoxy based coatings as well as when an insulation layer was introduced are reported. Ultimate Tensile Stress (UTS) and modulus values were obtained at −40°C, ambient, and 85°C for uncoated specimens before and after thermal cycling.
Technical Paper

Adding Depth: Establishing 3D Display Fundamentals for Automotive Applications

2015-04-14
2015-01-0147
The advent of 3D displays offers Human-Machine Interface (HMI) designers and engineers new opportunities to shape the user's experience of information within the vehicle. However, the application of 3D displays to the in-vehicle environment introduces a number of new parameters that must be carefully considered in order to optimise the user experience. In addition, there is potential for 3D displays to increase driver inattention, either through diverting the driver's attention away from the road or by increasing the time taken to assimilate information. Manufacturers must therefore take great care in establishing the ‘do’s and ‘don’t's of 3D interface design for the automotive context, providing a sound basis upon which HMI designers can innovate. This paper describes the approach and findings of a three-part investigation into the use of 3D displays in the instrument cluster of a road car, the overall aim of which was to define the boundaries of the 3D HMI design space.
Technical Paper

Analytical Target Cascading Framework for Diesel Engine Calibration Optimisation

2014-10-13
2014-01-2583
This paper presents the development and implementation of an Analytical Target Cascading (ATC) Multi-disciplinary Design Optimisation (MDO) framework for the steady state engine calibration optimisation problem. The case is made that the ATC offers a convenient framework for the engine calibration optimisation problem based on steady state engine test data collected at specified engine speed / load points, which is naturally structured on 2 hierarchical levels: the ‘Global’ level, associated with performance over a drive cycle, and ‘Local’ level, relating to engine operation at each speed / load point. The case study of a diesel engine was considered to study the application of the ATC framework to a calibration optimisation problem. The paper describes the analysis and mathematical formulation of the diesel engine calibration optimisation as an ATC framework, and its Matlab implementation with gradient based and evolutionary optimisation algorithms.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Technical Paper

Optimization of Kinetic Parameters for an Aftertreatment Catalyst

2014-10-13
2014-01-2814
Mathematical modelling has become an essential tool in the design of modern catalytic systems. Emissions legislation is becoming increasingly stringent, and so mathematical models of aftertreatment systems must become more accurate in order to provide confidence that a catalyst will convert pollutants over the required range of conditions. Automotive catalytic converter models contain several sub-models that represent processes such as mass and heat transfer, and the rates at which the reactions proceed on the surface of the precious metal. Of these sub-models, the prediction of the surface reaction rates is by far the most challenging due to the complexity of the reaction system and the large number of gas species involved.
Journal Article

1-D Simulation Study of Divided Exhaust Period for a Highly Downsized Turbocharged SI Engine - Scavenge Valve Optimization

2014-04-01
2014-01-1656
Fuel efficiency and torque performance are two major challenges for highly downsized turbocharged engines. However, the inherent characteristics of the turbocharged SI engine such as negative PMEP, knock sensitivity and poor transient performance significantly limit its maximum potential. Conventional ways of improving the problems above normally concentrate solely on the engine side or turbocharger side leaving the exhaust manifold in between ignored. This paper investigates this neglected area by highlighting a novel means of gas exchange process. Divided Exhaust Period (DEP) is an alternative way of accomplishing the gas exchange process in turbocharged engines. The DEP concept engine features two exhaust valves but with separated function. The blow-down valve acts like a traditional turbocharged exhaust valve to evacuate the first portion of the exhaust gas to the turbine.
X