Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Percipient Analysis of Jaguar I-PACE Electric Vehicle Energy Consumption Using Big Data Analytics

2024-04-09
2024-01-2879
Vehicle efficiency and range, along with the DC charging speed, are deemed as the most important criteria for an electric vehicle currently. The electric vehicle energy consumption is impacted by the change in temperature along with the driving style and average speed of a customer, all other factors being constant. Hence understanding the patterns and impact of different aspects of an EV range & charging speed is crucial in delivering an electric vehicle with robust efficiency across all weather conditions. In this paper we have analysed vehicle parameters of global Jaguar I-PACE customer data. We present and analyse the collated big data of around 50,000+ unique vehicles with a data aggregate of well over 482 million km. In moderate ambient conditions the analysis indicated a good correlation with 50th to 75th percentile drivers’ energy consumption to the EPA label figure.
Technical Paper

Comparison of Neural Network Topologies for Sensor Virtualisation in BEV Thermal Management

2024-04-09
2024-01-2005
Energy management of battery electric vehicle (BEV) is a very important and complex multi-system optimisation problem. The thermal energy management of a BEV plays a crucial role in consistent efficiency and performance of vehicle in all weather conditions. But in order to manage the thermal management, it requires a significant number of temperature sensors throughout the car including high voltage batteries, thus increasing the cost, complexity and weight of the car. Virtual sensors can replace physical sensors with a data-driven, physical relation-driven or machine learning-based prediction approach. This paper presents a framework for the development of a neural network virtual sensor using a thermal system hardware-in-the-loop test rig as the target system. The various neural network topologies, including RNN, LSTM, GRU, and CNN, are evaluated to determine the most effective approach.
Technical Paper

Material Modelling of Lamination Stack in Electric Machines

2024-04-09
2024-01-2745
The rotor and stator of electric motors consist of multiple materials, of which steel forms the majority of mass and volume. Steel in electric motors is commonly in the form of thin sheets (laminations), stacked along the axis of the rotor. The structural integrity of such a stack can be ensured using bolting, welding or bonding of the laminations. Predictive mechanical finite element simulations of these laminated stacks can become computationally intense because the steel sheets are thin, and the motor often contains hundreds of them. If the laminations are modelled individually, the size of the elements is very small compared to the overall dimensions and the interface between the laminations need to be modelled as well. In this paper, we present an alternate method of modelling this laminated stack as a single solid body using homogeneous and orthotropic material property, instead of representing each lamination.
Technical Paper

Virtual Evaluation of PM Rotor Failure Modes and Magnet Adhesive Debonding with Cohesive Interface Approach

2024-04-09
2024-01-2725
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements gives rise to the need for increased efficiency and power density of the motors in the Electric Drive Unit (EDU). Internal Permanent Magnet (IPM) motor is one of the best suited options in such scenarios because of its primary advantages of higher efficiency and precise control over torque and speed. In the IPM motor, permanent magnets are mounted within the rotor body to produce a resultant rotating magnetic field with the 3-phase AC current supply in the stator. IPM configuration provides structural integrity and high dynamic performance as the magnets are inserted within the rotor body. Adhesive glue is used to install the magnets within the laminated stack of rotor.
Technical Paper

Zero Emission Hydrogen Internal Combustion Engine for a 5 kW Mobile Power Generator: Conversion Strategy for Carburetted SI Engines

2023-08-28
2023-24-0183
A carburetted, spark ignited gasoline fuelled engine of a 5 kW rated power generator was converted to run on hydrogen. As opposed to large parts of current research, the engine conversion’s foremost goal was not to maximise efficiency and power output but rather to find a cost-effective and low-complexity conversion approach to introduce clean fuels to existing engines. To allow for the increased volumetric fuel flow, the riser of the original carburettor was enlarged. The hydrogen flow into the venturi was metered with the help of a pressure regulator from a widely available conversion kit. The effects of different hydrogen-fuel-feed pressures on engine performance, operational stability and emission levels were examined experimentally. It was found that the hydrogen-line pressure before startup has to be set precisely (±5 mbar) to allow for stable and emission free operation.
Technical Paper

Visualisation of Roof Bar Noise Sources through the Use of Acoustic Beamforming and Computational Aeroacoustics

2023-04-11
2023-01-0840
The reduction in wind noise is increasingly important to vehicle designers as overall vehicle refinement increases. Customers often fit accessories such as roof bars to vehicles, with the aerodynamic interaction of these components generating aeroacoustic noise sources. These are often tonal in nature and of particular annoyance to occupants. Sensors for automated driving fitted to future vehicles may also have a similar detrimental effect on vehicle refinement. Therefore, careful design of such components is important to minimise dissatisfaction. This paper presents the combined application of acoustic beamforming in a full-scale aeroacoustic wind tunnel and the use of a Lattice Boltzmann Method CFD code to characterise the aeroacoustic performance of a roof bar design when fitted to a production vehicle.
Technical Paper

Using Multi-Fidelity Turbulence Modelling Approaches to Analyse DrivAer External Aerodynamics

2023-04-11
2023-01-0016
Increasing fuel and electricity prices create high pressure to develop efficient external aerodynamics of road cars. At the same time, development cycles are getting shorter to meet changing customer preferences while physical testing capacities remain limited, creating a pressing need for fast and accurate turbulence models to predict aerodynamic performance. This paper introduces and discusses different turbulence modelling approaches beyond the well-known and established models used today in the industry. The RANS Lag Elliptic Blending (Lag EB) k − ϵ model, which enables highly accurate steady-state RANS, was chosen as the baseline approach. As a medium fidelity approach Scale-Resolving Hybrid (SRH) model was utilized, which modifies a RANS base model to produce a smooth transition between URANS and LES behavior. The Wall-Modelled LES (WMLES) method was chosen for high fidelity simulations.
Technical Paper

Application of Model Predictive Control to Cabin Climate Control Leading to Increased Electric Vehicle Range

2023-04-11
2023-01-0137
For electric vehicles (EVs), driving range is one of the major concerns for wider customer acceptance and the cabin climate system represents the most significant auxiliary load for battery consumption. Unlike internally combustion engine (ICE) vehicles, EVs cannot utilize the waste heat from an engine to heat the cabin through the heating, ventilation and air conditioning (HVAC) system. Instead, EVs use battery energy for cabin heating, this reduces the driving range. To mitigate this situation, one of the most promising solutions is to optimize the recirculation of cabin air, to minimize the energy consumed by heating the cold ambient air through the HVAC system, whilst maintaining the same level of cabin comfort. However, the development of this controller is challenging, due to the coupled, nonlinear and multi-input multi-output nature of the HVAC and thermal systems.
Technical Paper

Evaluation of Optimal State of Charge Planning Using MPC

2022-03-29
2022-01-0742
Hybrid technologies enable the reduction of noxious tailpipe emissions and conformance with ever-decreasing allowable homologation limits. The complexity of the hybrid powertrain technology leads to an energy management problem with multiple energy sinks and sources comprising the system resulting in a high-dimensional time dependent problem for which many solutions have been proposed. Methods that rely on accurate predictions of potential vehicle operations are demonstrably more optimal when compared to rule-based methodology [1]. In this paper, a previously proposed energy management strategy based on an offline optimization using dynamic programming is investigated. This is then coupled with an online model predictive control strategy to follow the predetermined optimal battery state of charge trajectory prescribed by the dynamic program.
Journal Article

The Aerodynamic Development of the New Range Rover Evoque

2022-03-29
2022-01-0890
The Range Rover Evoque is a compact luxury SUV, first introduced by Land Rover in 2012. Almost 800,000 units of the first-generation vehicle were sold. This paper explores some of the challenges entailed in developing the next generation of this successful product, maintaining key design cues while at the same time improving its aerodynamic efficiency. A development approach is outlined that made use of both numerical simulation and full-scale moving ground wind tunnel testing. A drag coefficient of 0.32 was obtained for the best derivative by paying particular attention to: the integration of active grille shutters; the front bumper and tyre package; brake cooling; underfloor design; wake control strategy; and detail optimization. This approach delivered the most aerodynamic Range Rover at the time of its introduction. The impact of these design changes on the aerodynamic flow field and consequently drag is highlighted.
Technical Paper

Simulating Bonnet Flutter - Unsteady Aerodynamics and Its Structural Response

2021-04-06
2021-01-0946
Government regulations and consumer needs are driving automotive manufacturers to reduce vehicle energy consumption. However, this forms part of a complex landscape of regulation and customer needs. For instance, when reducing aerodynamic drag or vehicle weight for efficiency other important factors must be taken into account. This is seen in vehicle bonnet design. The bonnet is a large unsupported structure that is exposed to very high and often fluctuating aerodynamic loads, due to travelling in the wake of other vehicles. When travelling at high speed and in close proximity to other vehicles this unsteady aerodynamic loading can force the bonnet structure to vibrate, so-called “bonnet flutter”. A bonnet which is stiff enough to not flutter may be either too heavy for efficiency or insufficiently compliant to meet pedestrian safety requirements. On the other hand, a bonnet which flutters may be structurally compromised or undermine customer perceptions of vehicle quality.
Technical Paper

Effect of Liquid Break-Up Model Selection on Simulated Diesel Spray and Combustion Characteristics

2021-04-06
2021-01-0546
Accurate modelling for spray vapour fields is critical to enable adequate predictions of spray ignition and combustion characteristics of non-premixed reacting diesel sprays. Spray vapour characteristics are in turn controlled by liquid atomization and the KH-RT liquid jet break-up model is regularly used to predict this: with the KH model used for predicting primary break-up given its definition as a surface wave growth model, and the RT model used for predicting secondary break-up due to it being a drag based, stripping model. This paper investigates how the alteration of the switching position of the KH and RT sub-models within the KH-RT model impacts the resulting vapour field and ignition characteristics. The combustion prediction is handled by the implementation of a 54 species, 269 reaction skeletal mechanism utilising a Well Stirred Reactor model within the Star-CD CFD code.
Technical Paper

A New Generation Lean Gasoline Engine for Premium Vehicle CO2 Reduction

2021-04-06
2021-01-0637
In an era of rapidly increasing vehicle electrification, the gasoline engine remains a vital part of the passenger car powertrain portfolio. Lean-burn combustion is a formidable means for reducing the CO2 emissions of gasoline engines but demands the use of sophisticated emissions control. A 2.0 litre turbocharged direct-injection gasoline engine has been developed with a lean homogeneous combustion system matched to a robust lean and stoichiometric-capable exhaust aftertreatment. The aftertreatment system includes an SCR system and a GPF with filtration down to 10 nm particle size. The engine is equipped with a continuously variable valve-lift system, high-tumble ports and a high-energy ignition system; the boosting system comprises a variable geometry turbocharger and a 48 V electrical supercharger. The work reported formed part of the PaREGEn (Particle Reduced, Efficient Gasoline Engines) project under the Horizon 2020 framework programme.
Technical Paper

Active Limitation of Tire Wear and Emissions for Electrified Vehicles

2021-04-06
2021-01-0328
Eliminating toxic exhaust emissions, amongst them particulate matter (PM), is one of the driving factors behind the increasing use of electrified vehicles. However, it is frequently overseen that PM arise not only from combustion, but from non-exhaust traffic related causes as well; in particular from the vehicle brakes, tires and the road surface. Furthermore, as electrified vehicles weigh more and typically exhibit higher torques at low speeds, their non-exhaust emissions tend to be higher than for comparable conventional vehicles, especially those generated by tires. Fortunately, tire related emissions are directly related to tire wear, so that limiting tire wear can reduce these emissions as well. This can be accomplished by intelligently modulating the vehicle torque profile in real time, to limit the operation in conditions of higher tire wear.
Technical Paper

Impacts of particulate matter emissions from a highway on the neighboring population

2021-03-26
2020-36-0235
The road freight transport sector is one of the main responsible for the air pollution (as the case of particulate matter) and greenhouse gases emissions worldwide. Different types of fuel technologies have been developed in order to improve efficiency, reduce air pollution impacts, such as the case of liquefied natural gas (LNG) for heavy-duty vehicles. Many studies show the relationship between the effects of short and long-term exposure to particulate matter (PM) and, according to the World Health Organization (WHO), premature deaths worldwide as well as cardiorespiratory diseases in elderly population are related to this pollutant. In this context, this paper aims at evaluating the atmospheric dispersion of PM in a stretch of a highway (Anhanguera-Bandeirantes) in the São Paulo State in Brazil due to the road freight transport considering the use of diesel and LNG in heavy-duty vehicles and the impacts on human health. The software AERMOD designed by U.S.
Technical Paper

Numerical Simulations of the Effect of Cold Fuel Temperature on In-Nozzle Flow and Cavitation Using a Model Injector Geometry

2020-09-15
2020-01-2116
In the present study, Large Eddy Simulations (LES) have been performed with a 3D model of a step nozzle injector, using n-pentane as the injected fluid, a representative of the high-volatility components in gasoline. The influence of fuel temperature and injection pressure were investigated in conditions that shed light on engine cold-start, a phenomenon prevalent in a number of combustion applications, albeit not extensively studied. The test cases provide an impression of the in-nozzle phase change and the near-nozzle spray structure across different cavitation regimes. Results for the 20oC fuel temperature case (supercavitating regime) depict the formation of a continuous cavitation region that extends to the nozzle outlet. Collapse-induced pressure wave dynamics near the outlet cause a transient entrainment of air from the discharge chamber towards the nozzle.
Journal Article

Multi-Plane PIV Measurements in a Gasoline Direct Injection Engine

2020-09-15
2020-01-2049
The flows in-cylinder have a profound effect on the mixture preparation and subsequent combustion in all engines. These flows are highly three-dimensional in nature and information from multiple planes is required to characterise the flow dynamics. The flow measurements reported here are from three orthogonal planes in an optical access engine that is based on the Jaguar Land Rover AJ200 Gasoline Direct Injection (GDI) engine. Particle Image Velocimetry (PIV) measurements have been taken every 5°CA from the start of induction to the end of compression. Data have been obtained from 300 cycles for separate experiments measuring flows in the tumble plane, the swirl plane and the cross-tumble plane. Vector comparison metrics are used to quantitatively compare ensemble averaged PIV flow fields to Computational Fluid Dynamics (CFD) simulations across each plane in terms of both the velocity magnitude and direction.
Technical Paper

Co-Simulation Methods for Holistic Vehicle Design: A Comparison

2020-04-14
2020-01-1017
Vehicle development involves the design and integration of subsystems of different domains to meet performance, efficiency, and emissions targets set during the initial developmental stages. Before a physical prototype of a vehicle or vehicle powertrain is tested, engineers build and test virtual prototypes of the design(s) on multiple stages throughout the development cycle. In addition, controllers and physical prototypes of subsystems are tested under simulated signals before a physical prototype of the vehicle is available. Different departments within an automotive company tend to use different modelling and simulation tools specific to the needs of their specific engineering discipline. While this makes sense considering the development of the said system, subsystem, or component, modern holistic vehicle engineering requires the constituent parts to operate in synergy with one-another in order to ensure vehicle-level optimal performance.
Technical Paper

Large-Scale Simulation of PEM Fuel Cell Using a “3D+1D” Model

2020-04-14
2020-01-0860
Nowadays, proton exchange membrane (PEM) fuel cell is widely seen as a promising energy conversion device especially for transportation application scenario because of its high efficiency, low operation temperature and nearly-zero road emission. Extensive modeling work have been done based on different dimensions during the past decades, including one-dimensional (1D), two-dimensional (2D), three-dimensional (3D) and intermediate combinations in between (e.g. “1+1D”). 1D model benefits from a rationally-chosen set of assumptions to obtain excellent calculation efficiency, yet at the cost of accuracy to some extent. In contrast, 3D model has great advantage over 1D model on acquiring more comprehensive information inside the fuel cell. For macro-scale modeling work, one compromise aiming to realize both acceptable computation speed and reasonable reflection of cell operation state is to simplify the membrane electrode assembly (MEA).
Technical Paper

Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

2020-04-14
2020-01-0151
Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy.
X