Refine Your Search

Topic

Author

Search Results

Technical Paper

Material Modelling of Lamination Stack in Electric Machines

2024-04-09
2024-01-2745
The rotor and stator of electric motors consist of multiple materials, of which steel forms the majority of mass and volume. Steel in electric motors is commonly in the form of thin sheets (laminations), stacked along the axis of the rotor. The structural integrity of such a stack can be ensured using bolting, welding or bonding of the laminations. Predictive mechanical finite element simulations of these laminated stacks can become computationally intense because the steel sheets are thin, and the motor often contains hundreds of them. If the laminations are modelled individually, the size of the elements is very small compared to the overall dimensions and the interface between the laminations need to be modelled as well. In this paper, we present an alternate method of modelling this laminated stack as a single solid body using homogeneous and orthotropic material property, instead of representing each lamination.
Technical Paper

Virtual Evaluation of PM Rotor Failure Modes and Magnet Adhesive Debonding with Cohesive Interface Approach

2024-04-09
2024-01-2725
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements gives rise to the need for increased efficiency and power density of the motors in the Electric Drive Unit (EDU). Internal Permanent Magnet (IPM) motor is one of the best suited options in such scenarios because of its primary advantages of higher efficiency and precise control over torque and speed. In the IPM motor, permanent magnets are mounted within the rotor body to produce a resultant rotating magnetic field with the 3-phase AC current supply in the stator. IPM configuration provides structural integrity and high dynamic performance as the magnets are inserted within the rotor body. Adhesive glue is used to install the magnets within the laminated stack of rotor.
Journal Article

The Aerodynamic Development of the New Range Rover Evoque

2022-03-29
2022-01-0890
The Range Rover Evoque is a compact luxury SUV, first introduced by Land Rover in 2012. Almost 800,000 units of the first-generation vehicle were sold. This paper explores some of the challenges entailed in developing the next generation of this successful product, maintaining key design cues while at the same time improving its aerodynamic efficiency. A development approach is outlined that made use of both numerical simulation and full-scale moving ground wind tunnel testing. A drag coefficient of 0.32 was obtained for the best derivative by paying particular attention to: the integration of active grille shutters; the front bumper and tyre package; brake cooling; underfloor design; wake control strategy; and detail optimization. This approach delivered the most aerodynamic Range Rover at the time of its introduction. The impact of these design changes on the aerodynamic flow field and consequently drag is highlighted.
Technical Paper

Simulating Bonnet Flutter - Unsteady Aerodynamics and Its Structural Response

2021-04-06
2021-01-0946
Government regulations and consumer needs are driving automotive manufacturers to reduce vehicle energy consumption. However, this forms part of a complex landscape of regulation and customer needs. For instance, when reducing aerodynamic drag or vehicle weight for efficiency other important factors must be taken into account. This is seen in vehicle bonnet design. The bonnet is a large unsupported structure that is exposed to very high and often fluctuating aerodynamic loads, due to travelling in the wake of other vehicles. When travelling at high speed and in close proximity to other vehicles this unsteady aerodynamic loading can force the bonnet structure to vibrate, so-called “bonnet flutter”. A bonnet which is stiff enough to not flutter may be either too heavy for efficiency or insufficiently compliant to meet pedestrian safety requirements. On the other hand, a bonnet which flutters may be structurally compromised or undermine customer perceptions of vehicle quality.
Technical Paper

Effect of Liquid Break-Up Model Selection on Simulated Diesel Spray and Combustion Characteristics

2021-04-06
2021-01-0546
Accurate modelling for spray vapour fields is critical to enable adequate predictions of spray ignition and combustion characteristics of non-premixed reacting diesel sprays. Spray vapour characteristics are in turn controlled by liquid atomization and the KH-RT liquid jet break-up model is regularly used to predict this: with the KH model used for predicting primary break-up given its definition as a surface wave growth model, and the RT model used for predicting secondary break-up due to it being a drag based, stripping model. This paper investigates how the alteration of the switching position of the KH and RT sub-models within the KH-RT model impacts the resulting vapour field and ignition characteristics. The combustion prediction is handled by the implementation of a 54 species, 269 reaction skeletal mechanism utilising a Well Stirred Reactor model within the Star-CD CFD code.
Journal Article

Multi-Plane PIV Measurements in a Gasoline Direct Injection Engine

2020-09-15
2020-01-2049
The flows in-cylinder have a profound effect on the mixture preparation and subsequent combustion in all engines. These flows are highly three-dimensional in nature and information from multiple planes is required to characterise the flow dynamics. The flow measurements reported here are from three orthogonal planes in an optical access engine that is based on the Jaguar Land Rover AJ200 Gasoline Direct Injection (GDI) engine. Particle Image Velocimetry (PIV) measurements have been taken every 5°CA from the start of induction to the end of compression. Data have been obtained from 300 cycles for separate experiments measuring flows in the tumble plane, the swirl plane and the cross-tumble plane. Vector comparison metrics are used to quantitatively compare ensemble averaged PIV flow fields to Computational Fluid Dynamics (CFD) simulations across each plane in terms of both the velocity magnitude and direction.
Technical Paper

Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

2020-04-14
2020-01-0151
Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy.
Technical Paper

Modelling Pressure Losses in Gasoline Particulate Filters in High Flow Regimes and Temperatures

2019-12-19
2019-01-2330
This study presents a one-dimensional model for the prediction of the pressure loss across a wall-flow gasoline particulate filter (GPF). The model is an extension of the earlier models of Bissett [1] and Konstandopoulos and Johnson [2] to the turbulent flow regime, which may occur at high flow rates and temperatures characteristic of gasoline engine exhaust. A strength of the proposed model is that only one parameter (wall permeability) needs to be calibrated. An experimental study of flow losses for cold and hot flow is presented, and a good agreement is demonstrated. Unlike zero-dimensional models, this model provides information about the flow along the channels and thus can be extended for studies of soot and ash accumulation, heat transfer and reaction kinetics.
Technical Paper

HyPACE - Hybrid Petrol Advance Combustion Engine - Advanced Boosting System for Extended Stoichiometric Operation and Improved Dynamic Response

2019-04-02
2019-01-0325
The HyPACE (Hybrid Petrol Advanced Combustion Engine) project is a part UK government funded research project established to develop a high thermal efficiency petrol engine that is optimized for hybrid vehicle applications. The project combines the capabilities of a number of partners (Jaguar Land Rover, BorgWarner, MAHLE Powertrain, Johnson Matthey, Cambustion and Oxford University) with the target of achieving a 10% vehicle fuel consumption reduction, whilst still achieving a 90 to 100 kW/liter power rating through the novel application of a combination of new technologies. The baseline engine for the project was Jaguar Land Rover’s new Ingenium 4-cylinder petrol engine which includes an advanced continuously variable intake valve actuation mechanism. A concept study has been undertaken and detailed combustion Computational Fluid Dynamics (CFD) models have been developed to enable the optimization of the combustion system layout of the engine.
Technical Paper

Method Development and Application of Thermal Encapsulation to Reduce Fuel Consumption of Internal Combustion Powertrains

2019-04-02
2019-01-0902
Under bonnet thermal encapsulation is a method for retaining the heat generated by a running powertrain after it is turned off. By retaining the heat in the engine bay, the powertrain will be closer to its operating temperatures the next time it is started, reducing the warm up time required. This reduces the period of inefficiency due to high friction losses before the engine reaches it operating temperature, and as a result reduces the vehicles fuel consumption and CO2 emissions. To develop an integrated and efficient encapsulation design, CAE methods can be applied to allow this work stream to start as early in a vehicles development cycle as possible. In this work, the existing test methods are discussed, and a new Thermal CFD method is presented that accurately simulates the fluid temperatures after a customer representative 9 hour park period.
Technical Paper

Robust Optimization for Real World CO2 Reduction

2018-05-30
2018-37-0015
Ground transportation industry contributes to about 14% of the global CO2 emissions. Therefore, any effort in reducing global CO2 needs to include the design of cleaner and more energy efficient vehicles. Their design needs to be optimized for the real-world conditions. Using wind tunnels that can only reproduce idealized conditions quite often does not translate into real-world on-road CO2 reduction and improved energy efficiency. Several recent studies found that very rarely can the real-world environment be represented by turbulence-free conditions simulated in wind tunnels. The real-world conditions consist of both transversal flow velocity component (causing an oncoming yaw flow) as well as large-scale turbulent fluctuations, with length scales of up to many times the size of a vehicle. The study presented in this paper shows how the realistic wind affects the aerodynamics of the vehicle.
Technical Paper

Validation Studies for an Advanced Aerodynamic Development Process of Cab-Over Type Heavy Trucks

2017-10-25
2017-01-7009
The implementation of an advanced process for the aerodynamic development of cab-over type heavy trucks at China FAW Group Corporation (FAW) requires a rigorous validation of the tools employed in this process. The final objective of the aerodynamic optimization of a heavy truck is the reduction of the fuel consumption. The aerodynamic drag of a heavy truck contributes up to 50% of the overall resistance and thus fuel consumption. An accurate prediction of the aerodynamic drag under real world driving conditions is therefore very important. Tools used for the aerodynamic development of heavy trucks include Computational Fluid Dynamics (CFD), wind tunnels and track and road testing methods. CFD and wind tunnels are of particular importance in the early phase development.
Technical Paper

Comparing the Effect of a Swirl Flap and Asymmetric Inlet Valve Opening on a Light Duty Diesel Engine

2017-10-08
2017-01-2429
Diesel engine designers often use swirl flaps to increase air motion in cylinder at low engine speeds, where lower piston velocities reduce natural in-cylinder swirl. Such in-cylinder motion reduces smoke and CO emissions by improved fuel-air mixing. However, swirl flaps, acting like a throttle on a gasoline engine, create an additional pressure drop in the inlet manifold and thereby increase pumping work and fuel consumption. In addition, by increasing the fuel-air mixing in cylinder the combustion duration is shortened and the combustion temperature is increased; this has the effect of increasing NOx emissions. Typically, EGR rates are correspondingly increased to mitigate this effect. Late inlet valve closure, which reduces an engine’s effective compression ratio, has been shown to provide an alternative method of reducing NOx emissions.
Technical Paper

Comparing the Effect of Fuel/Air Interactions in a Modern High-Speed Light-Duty Diesel Engine

2017-09-04
2017-24-0075
Modern diesel cars, fitted with state-of-the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant cost, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder, both during the injection and combustion events and also due to the induced air motion in and around the bowl prior to injection. In this paper the effect of two different piston bowl shapes are investigated.
Book

Chassis Dynamometer Testing: Addressing the Challenges of New Global Legislation

2017-06-29
The use of the chassis dynamometer test cells has been an integral part of the vehicle development and validation process for several decades, involving specialists from different fields, not all of them necessarily experts in automotive engineering. CHASSIS DYNAMOMETER TESTING: Addressing the Challenges of New Global Legislation (WLTP and RDE) sets out to gather knowledge from multiple groups of specialists to better understand the testing challenges associated with the vehicle chassis dynamometer test cells, and enable informed design and use of these facilities.
Journal Article

Accurate Fuel Economy Prediction via a Realistic Wind Averaged Drag Coefficient

2017-03-28
2017-01-1535
The ultimate goal for vehicle aerodynamicists is to develop vehicles that perform well on the road under real-world conditions. One of the most important metrics to evaluate vehicle performance is the drag coefficient. However, vehicle development today is performed mostly under controlled settings using wind tunnels and computational fluid dynamics (CFD) with artificially uniform upstream conditions, neglecting real-world effects due to road turbulence from wind and other vehicles. Thus, the drag coefficients computed with these methods might not be representative of the real performance of the car on the road. This might ultimately lead engineers to develop design solutions and aerodynamic devices which, while performing well in idealized conditions, do not perform well on the road. For this reason, it is important to assess the vehicle’s drag as seen in real-world environments. An effort in this direction is represented by using the wind-averaged drag.
Technical Paper

Influence of Coolant Temperature and Flow Rate, and Air Flow on Knock Performance of a Downsized, Highly Boosted, Direct-Injection Spark Ignition Engine

2017-03-28
2017-01-0664
The causes of engine knock are well understood but it is important to be able to relate these causes to the effects of controllable engine parameters. This study attempts to quantify the effects of a portion of the available engine parameters on the knock behavior of a 60% downsized, DISI engine running at approximately 23 bar BMEP. The engines response to three levels of coolant flow rate, coolant temperature and exhaust back pressure were investigated independently. Within the tested ranges, very little change in the knock limited spark advance (KLSA) was observed. The effects of valve timing on scavenge flow and blow through (the flow of fresh air straight into the exhaust system during the valve overlap period) were investigated at two conditions; at fixed inlet/exhaust manifold pressures, and at fixed engine torque. For both conditions, a matrix of 8 intake/exhaust cam combinations was tested, resulting in a wide range of valve overlap conditions (from 37 to -53°CA).
Technical Paper

Passengers vs. Battery: Calculation of Cooling Requirements in a PHEV

2016-04-05
2016-01-0241
The power demand of air conditioning in PHEVs is known to have a significant impact on the vehicle’s fuel economy and performance. Besides the cooling power associated to the passenger cabin, in many PHEVs, the air conditioning system provides power to cool the high voltage battery. Calculating the cooling power demands of the cabin and battery and their impact on the vehicle performance can help with developing optimum system design and energy management strategies. In this paper, a representative vehicle model is used to calculate these cooling requirements over a 24-hour duty cycle. A number of pre-cooling and after-run cooling strategies are studied and effect of each strategy on the performance of the vehicle including, energy efficiency, battery degradation and passenger thermal comfort are calculated. Results show that after-run cooling of the battery should be considered as it can lead to significant reductions in battery degradation.
Journal Article

Aerodynamic Comparison of Tractor-Trailer Platooning and A-Train Configuration

2015-09-29
2015-01-2897
Modern aerodynamic Class 8 freight tractors can improve vehicle freight efficiency and fuel economy versus older traditional style tractors when pulling Canadian style A- or B-Train double trailer long combination vehicles (LCV's) at highway speeds. This paper compares the aerodynamic performance of a current generation aerodynamic tractor with several freight hauling configurations through computational fluid dynamics evaluations using the Lattice-Boltzmann methodology. The configurations investigated include the tractor hauling a standard 53′ trailer, a platooning configuration with a 30′ separation distance, and an A-Train configuration including two 48′ trailers connected with a dolly converter. The study demonstrates CFD's capability of evaluating extremely long vehicle combinations that might be difficult to accomplish in traditional wind tunnels due to size limitations.
Technical Paper

The Aerodynamic Development of a New Dongfeng Heavy Truck

2015-09-29
2015-01-2886
The development of a new Dongfeng Heavy truck had very strict targets for fuel consumption. As the aerodynamic drag plays a crucial role for the fuel consumption, a low drag value had to be achieved. It was therefore essential to include evaluation and optimization of the aerodynamics in the development process. Because wind tunnel facilities were not available, the complete aerodynamics development was based on digital simulation. The major portion of the aerodynamic optimization was carried out during the styling phase where mirrors, sun visor, front bumper and aero devices were optimized for drag reduction. For optimizing corner vanes and mud guards, self-soiling from the wheel spray was included in the analysis. The aero results did also show that cooling air flow rates are sufficiently high to ensure proper cooling. During the detailed engineering phase an increase of the drag above the target required further optimization work to finally reach the target.
X