Refine Your Search

Topic

Author

Search Results

Technical Paper

Material Modelling of Lamination Stack in Electric Machines

2024-04-09
2024-01-2745
The rotor and stator of electric motors consist of multiple materials, of which steel forms the majority of mass and volume. Steel in electric motors is commonly in the form of thin sheets (laminations), stacked along the axis of the rotor. The structural integrity of such a stack can be ensured using bolting, welding or bonding of the laminations. Predictive mechanical finite element simulations of these laminated stacks can become computationally intense because the steel sheets are thin, and the motor often contains hundreds of them. If the laminations are modelled individually, the size of the elements is very small compared to the overall dimensions and the interface between the laminations need to be modelled as well. In this paper, we present an alternate method of modelling this laminated stack as a single solid body using homogeneous and orthotropic material property, instead of representing each lamination.
Technical Paper

Beamforming Quantification of Acoustic Transmission Paths for Passenger Vehicles Using a Reciprocal Approach

2023-05-08
2023-01-1090
This paper presents an experimental method for measuring transmission paths from the exterior to the interior of a passenger vehicle using a reciprocal approach: A production vehicle was placed in a semi-anechoic environment; artificial noise sources were placed at the location of the occupant’s ear(s) inside the vehicle and beamforming arrays with a total of more than 300 microphones were used to observe apparent noise sources on the vehicle exterior resulting from transmission paths. This makes it possible to quickly measure transmission paths over the whole vehicle body. One of the motivations for this work is the monitoring of sealing quality on production vehicles. Artificial seal breaches were introduced on the vehicle and a number of excitation signals were assessed to develop a method to detect and localise leakage noise sources.
Technical Paper

Multi-Plane PIV using Depth of Field for In-cylinder Flow Measurements

2023-04-11
2023-01-0213
Extending the planar Particle Image Velocimetry (PIV) technique to enable measurements on multiple planes simultaneously allows for some of the 3 dimensional nature of unsteady flow fields to be investigated. This requires less hardware and retains the typically higher spatial resolution of planar PIV compared to fully 3-dimensional PIV techniques. Performing multi-plane PIV measurements requires the light scattered from the different measurement planes to be distinguishable. This may be achieved by using different laser wavelengths which adds significantly to the expense and complexity of the system, by using different light sheet polarisations which is challenging for engine measurements through windows due to stress-induced birefringence, or by making alternating measurements of each plane which sacrifices the simultaneity of the flow measurement across multiple planes.
Technical Paper

Evaluation of Optimal State of Charge Planning Using MPC

2022-03-29
2022-01-0742
Hybrid technologies enable the reduction of noxious tailpipe emissions and conformance with ever-decreasing allowable homologation limits. The complexity of the hybrid powertrain technology leads to an energy management problem with multiple energy sinks and sources comprising the system resulting in a high-dimensional time dependent problem for which many solutions have been proposed. Methods that rely on accurate predictions of potential vehicle operations are demonstrably more optimal when compared to rule-based methodology [1]. In this paper, a previously proposed energy management strategy based on an offline optimization using dynamic programming is investigated. This is then coupled with an online model predictive control strategy to follow the predetermined optimal battery state of charge trajectory prescribed by the dynamic program.
Technical Paper

Effect of Liquid Break-Up Model Selection on Simulated Diesel Spray and Combustion Characteristics

2021-04-06
2021-01-0546
Accurate modelling for spray vapour fields is critical to enable adequate predictions of spray ignition and combustion characteristics of non-premixed reacting diesel sprays. Spray vapour characteristics are in turn controlled by liquid atomization and the KH-RT liquid jet break-up model is regularly used to predict this: with the KH model used for predicting primary break-up given its definition as a surface wave growth model, and the RT model used for predicting secondary break-up due to it being a drag based, stripping model. This paper investigates how the alteration of the switching position of the KH and RT sub-models within the KH-RT model impacts the resulting vapour field and ignition characteristics. The combustion prediction is handled by the implementation of a 54 species, 269 reaction skeletal mechanism utilising a Well Stirred Reactor model within the Star-CD CFD code.
Technical Paper

A New Generation Lean Gasoline Engine for Premium Vehicle CO2 Reduction

2021-04-06
2021-01-0637
In an era of rapidly increasing vehicle electrification, the gasoline engine remains a vital part of the passenger car powertrain portfolio. Lean-burn combustion is a formidable means for reducing the CO2 emissions of gasoline engines but demands the use of sophisticated emissions control. A 2.0 litre turbocharged direct-injection gasoline engine has been developed with a lean homogeneous combustion system matched to a robust lean and stoichiometric-capable exhaust aftertreatment. The aftertreatment system includes an SCR system and a GPF with filtration down to 10 nm particle size. The engine is equipped with a continuously variable valve-lift system, high-tumble ports and a high-energy ignition system; the boosting system comprises a variable geometry turbocharger and a 48 V electrical supercharger. The work reported formed part of the PaREGEn (Particle Reduced, Efficient Gasoline Engines) project under the Horizon 2020 framework programme.
Technical Paper

Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

2020-04-14
2020-01-0151
Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy.
Technical Paper

Active Grille Shutters Control and Benefits in Medium to Large SUV: A System Engineering Approach

2020-04-14
2020-01-0945
Whilst the primary function of the active grille shutters is to reduce the aerodynamic drag of the car, there are some secondary benefits like improving the warm up time of engine and also retaining engine heat when parked. In turbocharged IC engines the air is compressed (heated) in the turbo and then cooled by a low temperature cooling system before going into the engine. When the air intake temperature exceeds a threshold value, the engine efficiency falls - this drives the need for the cooling airflow across the radiator in normal operation. Airflow is also required to manage the convective heat transfer across various components in the engine bay for its lifetime thermal durability. Grill shutters can also influence the aerodynamic lift balance thus impacting the vehicle dynamics at high speed. The vehicle HVAC system also relies on the condenser in the front heat exchanger pack disposing the waste heat off in the most efficient way.
Technical Paper

Set-Up and Validation of an Integrated Engine Thermal Model in GT-SUITE for Heat Rejection Prediction

2019-09-09
2019-24-0078
Current approaches to heat rejection prediction during the development stage of a new engine are mostly based on maps built upon experimental data. However, these maps can be obtained fairly late in the development process, when at least a prototype of the engine can be run on the test bench. Furthermore, such experimental maps are limited to a discrete number of points measured at fixed operating conditions. An innovative approach based on 1D simulation was tested in the commercial 1D multi-physics code GT-SUITE, developed by Gamma Technologies LLC, to advance the moment at which reliable heat rejection calculations can be effectively used to support the engine and cooling system design. A fully physical Diesel engine performance model - featuring a predictive combustion model - was integrated with a detailed finite element wall temperature solver based on the 3D meshing feature available in GT-SUITE.
Technical Paper

HyPACE - Hybrid Petrol Advance Combustion Engine - Advanced Boosting System for Extended Stoichiometric Operation and Improved Dynamic Response

2019-04-02
2019-01-0325
The HyPACE (Hybrid Petrol Advanced Combustion Engine) project is a part UK government funded research project established to develop a high thermal efficiency petrol engine that is optimized for hybrid vehicle applications. The project combines the capabilities of a number of partners (Jaguar Land Rover, BorgWarner, MAHLE Powertrain, Johnson Matthey, Cambustion and Oxford University) with the target of achieving a 10% vehicle fuel consumption reduction, whilst still achieving a 90 to 100 kW/liter power rating through the novel application of a combination of new technologies. The baseline engine for the project was Jaguar Land Rover’s new Ingenium 4-cylinder petrol engine which includes an advanced continuously variable intake valve actuation mechanism. A concept study has been undertaken and detailed combustion Computational Fluid Dynamics (CFD) models have been developed to enable the optimization of the combustion system layout of the engine.
Technical Paper

An Experimental Method to Test Twin and Double Entry Automotive Turbines in Realistic Engine Pulse Conditions

2019-04-02
2019-01-0319
In a context of increasing emission regulations, turbocharged gasoline engines are increasingly present in the automotive industry. In particular, the twin-entry and double-entry radial inflow turbines are widespread used technologies to avoid interferences between exhaust process of consecutive firing order cylinders. In this study, a passenger car twin-entry type turbine has been tested under highly pulsating flow conditions by means of a specifically built gas stand, trying to perform pulses with similar features as the ones that can be found in a real reciprocating engine. For this purpose, the turbine has been instrumented with multiple pressure, temperature and mass flow sensors, using a uniquely designed rotating valve for generating the pulses. The test bench setup is flexible enough to perform pulses in both inlet branches separately as well as to use hot or ambient conditions with minimal changes in the installation.
Technical Paper

Method Development and Application of Thermal Encapsulation to Reduce Fuel Consumption of Internal Combustion Powertrains

2019-04-02
2019-01-0902
Under bonnet thermal encapsulation is a method for retaining the heat generated by a running powertrain after it is turned off. By retaining the heat in the engine bay, the powertrain will be closer to its operating temperatures the next time it is started, reducing the warm up time required. This reduces the period of inefficiency due to high friction losses before the engine reaches it operating temperature, and as a result reduces the vehicles fuel consumption and CO2 emissions. To develop an integrated and efficient encapsulation design, CAE methods can be applied to allow this work stream to start as early in a vehicles development cycle as possible. In this work, the existing test methods are discussed, and a new Thermal CFD method is presented that accurately simulates the fluid temperatures after a customer representative 9 hour park period.
Technical Paper

Identification of Film Breakup for a Liquid Urea-Water-Solution and Application to CFD

2019-04-02
2019-01-0983
The reduction of NOx-emissions from diesel engines is crucial for the fulfilment of environmental standards. Selective catalytic reduction (SCR) is an effective way to achieve very low tailpipe NOx-emission levels. For an efficient after treatment system, a homogeneous distribution of gaseous ammonia across the catalytic surface is essential. Therefore, a detailed understanding of the impingement of the injected urea water solution (UWS), its evaporation and transformation to gaseous ammonia is of vital importance. Due to the complex physics of the impingement process, the simulation of SCR systems with computational fluid dynamics (CFD) relies upon empirical models known as impingement maps. In the current study a droplet chain generator was used to investigate single droplet impingement of UWS. The impingement events were filmed with a high speed camera and then analysed with respect to impingement velocity and droplet diameter as well as droplet Weber-number.
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Technical Paper

Comparing the Effect of a Swirl Flap and Asymmetric Inlet Valve Opening on a Light Duty Diesel Engine

2017-10-08
2017-01-2429
Diesel engine designers often use swirl flaps to increase air motion in cylinder at low engine speeds, where lower piston velocities reduce natural in-cylinder swirl. Such in-cylinder motion reduces smoke and CO emissions by improved fuel-air mixing. However, swirl flaps, acting like a throttle on a gasoline engine, create an additional pressure drop in the inlet manifold and thereby increase pumping work and fuel consumption. In addition, by increasing the fuel-air mixing in cylinder the combustion duration is shortened and the combustion temperature is increased; this has the effect of increasing NOx emissions. Typically, EGR rates are correspondingly increased to mitigate this effect. Late inlet valve closure, which reduces an engine’s effective compression ratio, has been shown to provide an alternative method of reducing NOx emissions.
Journal Article

In-Cylinder Temperature Measurements Using Laser Induced Grating Spectroscopy and Two-Colour PLIF

2017-09-04
2017-24-0045
In-cylinder temperature measurements are vital for the validation of gasoline engine modelling and useful in their own right for explaining differences in engine performance. The underlying chemical reactions in combustion are highly sensitive to temperature and affect emissions of both NOx and particulate matter. The two techniques described here are complementary, and can be used for insights into the quality of mixture preparation by measurement of the in-cylinder temperature distribution during the compression stroke. The influence of fuel composition on in-cylinder mixture temperatures can also be resolved. Laser Induced Grating Spectroscopy (LIGS) provides point temperature measurements with a pressure dependent precision in the range 0.1 to 1.0 % when the gas composition is well characterized and homogeneous; as the pressure increases the precision improves.
Technical Paper

Comparing the Effect of Fuel/Air Interactions in a Modern High-Speed Light-Duty Diesel Engine

2017-09-04
2017-24-0075
Modern diesel cars, fitted with state-of-the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant cost, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder, both during the injection and combustion events and also due to the induced air motion in and around the bowl prior to injection. In this paper the effect of two different piston bowl shapes are investigated.
Journal Article

Development of a Virtual Multi-Axial Simulation Table to Enhance the Prognosis of Loads on Powertrain Mounting System During Durability Applications

2017-03-28
2017-01-0420
Vibration Isolation is the key objective of engine mounting systems in the automotive industry. A well-designed, robust engine mount must be capable of isolating the engine assembly from road-based excitations. Owing to high vibration inputs, engine mounts are susceptible to wear and failure. Thus, the durability of engine mounts is a cause for concern. A design validation methodology has been developed at Jaguar Land Rover using Multibody Dynamics (MBD) to enhance the prognosis of engine mount loads during full - vehicle durability test events. This paper describes the development of a virtual multi-axial simulation table rig (MAST Rig) to test virtual engine mount designs. For the particular example considered in this paper, a simple sinusoidal input is applied to the MAST Rig. The development of the virtual MAST Rig has been described including details of the modelling methodology.
Journal Article

Off-Road Tire-Terrain Interaction: An Analytical Solution

2016-09-27
2016-01-8029
A novel semi-analytical solution has been developed for the calculation of the static and dynamic response of an off road tire interacting with a deformable terrain, which utilizes soil parameters independent of the size of the contact patch (size-independent). The models involved in the solution presented, can be categorized in rigid and/or pneumatic tires, with or without tread pattern. After a concise literature review of related methods, a detailed presentation of the semi-analytical solution is presented, along with assumptions and limitations. A flowchart is provided, showing the main steps of the numerical implementation, and various test cases have been examined, characterized in terms of vertical load, tire dimensions, soil properties, deformability of the tire, and tread pattern. It has been found that the proposed model can qualitatively capture the response of a rolling wheel on deformable terrain.
Technical Paper

Spray Behaviour and Particulate Matter Emissions with M15 Methanol/Gasoline Blends in a GDI Engine

2016-04-05
2016-01-0991
Model M15 gasoline fuels have been created from pure fuel components, to give independent control of volatility, the heavy end content and the aromatic content, in order to understand the effect of the fuel properties on Gasoline Direct Injection (GDI) fuel spray behaviour and the subsequent particulate number emissions. Each fuel was imaged at a range of fuel temperatures in a spray rig and in a motored optical engine, to cover the full range from non-flashing sprays through to flare flashing sprays. The spray axial penetration (and potential piston and liner impingement), and spray evaporation rate were extracted from the images. Firing engine tests with the fuels with the same fuel temperatures were performed and exhaust particulate number spectra captured using a DMS500 Mark II Particle Spectrometer.
X