Refine Your Search

Topic

Search Results

Technical Paper

Research on Artificial Potential Field based Soft Actor-Critic Algorithm for Roundabout Driving Decision

2024-04-09
2024-01-2871
Roundabouts are one of the most complex traffic environments in urban roads, and a key challenge for intelligent driving decision-making. Deep reinforcement learning, as an emerging solution for intelligent driving decisions, has the advantage of avoiding complex algorithm design and sustainable iteration. For the decision difficulty in roundabout scenarios, this paper proposes an artificial potential field based Soft Actor-Critic (APF-SAC) algorithm. Firstly, based on the Carla simulator and Gym framework, a reinforcement learning simulation system for roundabout driving is built. Secondly, to reduce reinforcement learning exploration difficulty, global path planning and path smoothing algorithms are designed to generate and optimize the path to guide the agent.
Technical Paper

A Survey of Vehicle Dynamics Models for Autonomous Driving

2024-04-09
2024-01-2325
Autonomous driving technology is more and more important nowadays, it has been changing the living style of our society. As for autonomous driving planning and control, vehicle dynamics has strong nonlinearity and uncertainty, so vehicle dynamics and control is one of the most challenging parts. At present, many kinds of specific vehicle dynamics models have been proposed, this review attempts to give an overview of the state of the art of vehicle dynamics models for autonomous driving. Firstly, this review starts from the simple geometric model, vehicle kinematics model, dynamic bicycle model, double-track vehicle model and multi degree of freedom (DOF) dynamics model, and discusses the specific use of these classical models for autonomous driving state estimation, trajectory prediction, motion planning, motion control and so on.
Technical Paper

Energy Dissipation Characteristics Analysis of Automotive Vibration PID Control Based on Adaptive Differential Evolution Algorithm

2024-04-09
2024-01-2287
To address the issue of PID control for automotive vibration, this paper supplements and develops the evaluation of automotive vibration characteristics, and proposes a vibration response quantity for evaluating the energy dissipation characteristics of automotive vibration. A two-degree-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined. This paper uses the Adaptive Differential Evolution (ADE) algorithm to tune the PID control parameters and introduces an adaptive mutation factor to improve the algorithm's adaptability. Several commonly used adaptive mutation factors are summarized in this paper, and their effects on algorithm improvement are compared.
Technical Paper

An Adaptive Clamping Force Control Strategy for Electro-Mechanical Brake System Considering Nonlinear Friction Resistance

2024-04-09
2024-01-2282
The Electronic Mechanical Braking (EMB) system, which offers advantages such as no liquid medium and complete decoupling, can meet the high-quality active braking and high-intensity regenerative braking demands proposed by intelligent vehicles and is considered one of the ideal platforms for future chassis. However, traditional control strategies with fixed clamping force tracking parameters struggle to maintain high-quality braking performance of EMB under variable braking requests, and the nonlinear friction between mechanical components also affects the accuracy of clamping force control. Therefore, this paper presents an adaptive clamping force control strategy for the EMB system, taking into account the resistance of nonlinear friction. First, an EMB model is established as the simulation and control object, which includes the motor model, transmission model, torque balance model, stiffness model, and friction model.
Technical Paper

Research on Intake System Noise Prediction and Analysis for a Commercial Vehicle with Air Compressor Model

2023-04-11
2023-01-0431
Intake system is an important noise source for commercial vehicles, which has a significant impact on their NVH performance. To predict the intake noise more accurately, a new one-dimensional prediction model is proposed in this paper. An air compressor model is introduced into the traditional model, and the acoustic properties of the intake system are simulated by GT-power. The simulation data of the inlet noise is obtained to make a comparison with the inlet noise data acquired from a test. The result shows that the proposed model can make a more precise prediction of the inlet noise. Compared with the traditional model, the proposed model can identify the noise coming from the air compressor, and achieve a more accurate prediction of the total sound pressure level of the inlet noise.
Technical Paper

A Hybrid Physical and Data-Driven Framework for Improving Tire Force Calculation Accuracy

2023-04-11
2023-01-0750
The accuracy of tire forces directly affects the vehicle dynamics model precision and determines the ability of the model to develop the simulation platform or design the control strategy. In the high slip angle, due to the complex interactions at tire-road interfaces, the forces generated by the tires are high nonlinearity and uncertainty, which pose issues in calculating tire force accurately. This paper presents a hybrid physical and data-driven tire force calculation framework, which can satisfy the high nonlinearity and uncertainty condition, improve the model accuracy and effectively leverage prior knowledge of physical laws. The parameter identification for the physical tire model and the data-based compensation for the unknown errors between the physical tire model and actual tire force data are contained in this framework. First, the parameters in the selected combined-slip Burckhardt tire model are identified by the nonlinear least square method with tire test data.
Technical Paper

Unstructured Road Region Detection and Road Classification Algorithm Based on Machine Vision

2023-04-11
2023-01-0061
Accurate sensing of road conditions is one of the necessary technologies for safe driving of intelligent vehicles. Compared with the structured road, the unstructured road has complex road conditions, and the response characteristics of vehicles under different road conditions are also different. Therefore, accurately identifying the road categories in front of the vehicle in advance can effectively help the intelligent vehicle timely adjust relevant control strategies for different road conditions and improve the driving comfort and safety of the vehicle. However, traditional road identification methods based on vehicle kinematics or dynamics are difficult to accurately identify the road conditions ahead of the vehicle in advance. Therefore, this paper proposes an unstructured road region detection and road classification algorithm based on machine vision to obtain the road conditions ahead.
Technical Paper

Driving Style Identification Strategy Based on DS Evidence Theory

2023-04-11
2023-01-0587
Driving assistance system is regarded as an effective method to improve driving safety and comfort and is widely used in automobiles. However, due to the different driving styles of different drivers, their acceptance and comfort of driving assistance systems are also different, which greatly affects the driving experience. The key to solving the problem is to let the system understand the driving style and achieve humanization or personalization. This paper focuses on clustering and identification of different driving styles. In this paper, based on the driver's real vehicle experiment, a driving data acquisition platform was built, meanwhile driving conditions were set and drivers were recruited to collect driving information. In order to facilitate the identification of driving style, the correlation analysis of driving features is conducted and the principal component analysis method is used to reduce the dimension of driving features.
Technical Paper

Research on High-efficiency Test Method of Vehicle AEB based on High-precision Detection of Radar Turntable Encoder

2021-10-11
2021-01-1273
With the increasingly complex traffic environment, the vehicle AEB system needs to go through a large number of testing processes, in order to drive more safely on the road. For speeding up the development process of AEB and solve the problems of long cycle, high cost and low efficiency in AEB testing, in this paper, a millimeter wave radar turntable is built, and a high-precision detection algorithm of turntable encoder is designed, at the same time, a test method of vehicle AEB based on the detection data of radar turntable encoder is designed. The verification results show that methods described in this paper can be used to develop the vehicle AEB test algorithm efficiently.
Journal Article

Multi-task Learning of Semantics, Geometry and Motion for Vision-based End-to-End Self-Driving

2021-04-06
2021-01-0194
It’s hard to achieve complete self-driving using hand-crafting generalized decision-making rules, while the end-to-end self-driving system is low in complexity, does not require hand-crafting rules, and can deal with complex situations. Modular-based self-driving systems require multi-task fusion and high-precision maps, resulting in high system complexity and increased costs. In end-to-end self-driving, we usually only use camera to obtain scene status information, so image processing is very important. Numerous deep learning applications benefit from multi-task learning, as the multi-task learning can accelerate model training and improve accuracy with combine all tasks into one model, which reduces the amount of calculation and allows these systems to run in real-time. Therefore, the approach of obtaining rich scene state information based on multi-task learning is very attractive. In this paper, we propose an approach to multi-task learning for semantics, geometry and motion.
Technical Paper

Novel Method for Identifying and Assessing Rattle Noise on Vehicle Seatbelt Retractors Based on Time-Frequency Analysis

2021-03-04
2021-01-5015
Rattle noise as an error state of cabin noise in vehicles has become an important topic both in research and application. In engineering, the commonly used method to evaluate and detect rattle issues is greatly dependent on experts’ personal auditory perception. People judge a noise simply as “loud” and “not loud” or “qualified” and “unqualified.” A more objective method needs to be developed to eliminate the randomness of subjective evaluation. In this paper, a rig test of the seatbelt retractors was performed, and simulated random excitation was applied to the test samples through the MB vibration test bench in a semi-anechoic chamber. The rattle noises were recorded by HEAD SQuadriga II. Various methods were employed to identify and assess the severity of rattle noise on seatbelt retractors.
Technical Paper

Active Interior Noise Control for Passenger Vehicle Using the Notch Dual-Channel Algorithms with Two Different Predictive Filters

2021-02-18
2020-01-5228
Active control of low-frequency engine order noise helps to improve the passenger’s sense of hearing, so it has become one of the hot topics in the automotive field. Depth improvement of active noise control (ANC) performance from the perspective of novel algorithms has attracted the attention of researchers. The conventional notch dual-channel filtered-x least mean square (NDFxLMS) algorithm shows acceptable noise reduction for the elimination of engine order noise. To further enhance the steady-state ANC effect, this paper proposed two new notch algorithms: the notch dual-channel filtered-x recursive least square (NDFxRLS) algorithm and the notch dual-channel affine projection (NDAP) algorithm. Vehicle simulation tests show that both the proposed algorithms, especially the NDFxRLS algorithm, have a satisfying performance for the cancellation of interior noise from the engine.
Technical Paper

Study of Rattle Noise in Vehicle Seat System under Different Excitation Signals and Loading Conditions

2021-02-17
2020-01-5230
The buzz, squeak, and rattle (BSR) noise in the vehicle seat system is one of the most common vehicle interior noises. The presence of the BSR noise in the seat system may affect the riding experience and cause discomfort to the occupants. Therefore, the BSR issues have gradually attracted the attention of researchers. The main problem of BSR noise evaluation is how to quantify the noise signal to realize rapid evaluation. In this paper, the impact of rattle noise is studied in the vehicle seat system. Psychoacoustic metrics, which are commonly used in vehicle BSR noise evaluation, are calculated and compared to build a vehicle seat system evaluation model. To improve the accuracy of the model, the variational mode decomposition (VMD) method is applied to decompose the original noise signal into six Intrinsic Mode Functions (IMFs) and then the energy of each IMF is weighted by the kurtosis to obtain new characteristic parameters.
Technical Paper

Research on Yaw Stability Control of Unmanned Vehicle Based on Integrated Electromechanical Brake Booster

2020-04-14
2020-01-0212
The Electromechanical Brake Booster system (EMBB) integrates active braking and energy recovery and becomes a novel brake-by-wire solution that substitutes the vacuum booster. While the intelligent unmanned vehicle is in unstable state, the EMBB can improve the vehicle yaw stability more quickly and safely. In this paper, a new type of integrated EMBB has been designed, which mainly includes two parts: servo motor unit and hydraulic control unit. Aiming at the dynamic instability problem of intelligent unmanned vehicle, a three-layer vehicle yaw stability control structure including decision layer, distribution layer and execution layer is proposed based on integrated EMBB. Firstly, the decision layer calculates the ideal yaw rate and the side slip angle of the vehicle with the classic 2DOF vehicle dynamics model. The boundary of the stable region is determined by the phase plane method and the additional yaw moment is determined by the feedback PI control algorithm.
Technical Paper

A Prediction Method of Tire Combined Slip Characteristics from Pure Slip Test Data

2020-04-14
2020-01-0896
A high-precision steady state tire model is critical in the tire and vehicle matching research. For the moment, the popular Magic Formula model is an empirical model, which requires the pure and combined test data to identify the model parameters. Although MTS Flat-trac is an efficient tire test rig, the long test period and high test cost of a complete tire model tests for handling are yet to be solved. Therefore, it is necessary to explore a high accuracy method for predicting tire complex mechanical properties with as few test data as possible. In this study, a method for predicting tire combined slip characteristics from pure cornering and pure longitudinal test data has been investigated, and verified by comparing with the test data. Firstly, the prediction theory of UniTire model is introduced, and the formula for predicting combined slip characteristics based on constant friction coefficient is derived.
Journal Article

Further Study of the Vehicle Rattle Noise with Consideration of the Impact Rates and Loudness

2020-04-14
2020-01-1261
With the prevalent trend of the pure electric vehicle, vehicle interior noise has been reduced significantly. However, other noises become prominent in the cabin. Especially, the BSR noise generated by friction between parts and the clearance between components become the elements of complaints directly affect the quality of vehicles. Currently, the BSR noises are subjectively evaluated by experts, and the noise samples are simply labeled as ‘qualified’ or ‘unqualified’. Therefore, it is necessary to develop an evaluation model to assess the BSR noise objectively. In this paper, we study the vehicle rattle noise intensively. Several types of rattle noise were recorded in a semi-anechoic room. The recorded signals were then processed in the LMS test lab. to extract the single impact segments. A pool of simulated signals with different impact rates (number of impacts per second) and various loudness was synthesized for analyzation.
Technical Paper

CATARC New Type Drivetrain NVH Test Facility

2019-04-02
2019-01-0788
A vehicle’s NVH performance has a significant impact on the user experience of the driver and passengers. About one-third of the vehicle complaints are related to NVH performance. As the core component of the vehicle, the drivetrain’s NVH characteristics have a significant impact on vehicle comfort. How to reliably and stably reproduce the specific condition of the whole vehicle through the test method, and obtain the highly consistent objective data for analyzing and improving the NVH characteristics of the drivetrain is of great significance in engineering. For this purpose, China Automotive Technology Research Center Co., Ltd. (CATARC) designed and built a new type drivetrain NVH test facility, which consists of five dynamometers, and can carry horizontal/vertical, front/rear drive or four-wheel drive structures including powertrain, transmission, and rear axle, or even a whole vehicle.
Technical Paper

Development and Verification of Control Algorithm for Permanent Magnet Synchronous Motor of the Electro-Mechanical Brake Booster

2019-04-02
2019-01-1105
To meet the new requirements of braking system for modern electrified and intelligent vehicles, various novel electro-mechanical brake boosters (Eboosters) are emerging. This paper is aimed at a new type of the Ebooster, which is mainly consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission and a servo mechanism. Among them, the PMSM is a vital actuator to realize the functions of the Ebooster. To get fast response of the Ebooster system, a novel control strategy employing a maximum torque per ampere (MTPA) control with current compensation decoupling and current-adjusting adaptive flux-weakening control is proposed, which requires the PMSM can operate in a large speed range and maintain a certain anti-load interference capability. Firstly, the wide speed control strategy for the Ebooster’s PMSM is designed in MATLAB/Simulink.
Technical Paper

A Driving Simulator Study of Young Driver’s Behavior under Angry Emotion

2019-04-02
2019-01-0398
The driving behaviors of young drivers under the influence of anger are analyzed by driving simulator in this paper. A total of 12 subjects are enrolled during the experiment. Standardized videos are utilized to induce the driver's anger emotion. And the driver's electrocardiogram (ECG) signal is collected synchronously and compared before and after emotional trigger, which prove the validity of emotional trigger. Based on the result, the driver's driving performance under the straight road and the curve under normal state and angry state are compared and analyzed. The results of independent sample t-test show that there are significant differences in the running time of straight sections and the standard deviation of steering wheel angle in curves between normal and angry states. In conclusion, the longitudinal and lateral operation of drivers is unstable in angry state and the driver will be more destructive to the regular driving behavior.
Technical Paper

Aeroelastic Response and Structural Improvement for Heavy-Duty Truck Cab Deflectors

2019-01-14
2019-01-5004
Numerical simulations on the fluid-structure interaction were conducted using commercial software STAR-CCM+ and ABAQUS. The aeroelastic responses of a deflector under several different working conditions were simulated utilizing finite volume and finite element methods to investigate the aeroelastic problem of automotive deflectors. Results showed that the structural response of a top deflector is minimal under the influence of aerodynamics given its large structural stiffness. The size of the top deflector was optimised by using thickness as a variable. The volume and quality of the top deflector were significantly reduced, and its lightweight performance was improved to satisfy the stiffness performance requirement. The vibration of a side deflector structure was mainly induced by the turbulence on the structure surface. The amplitude of vibration was small and the vibration gradually converged in a few seconds without obvious regularity.
X