Refine Your Search

Topic

Search Results

Technical Paper

Enhancing Lateral Stability in Adaptive Cruise Control: A Takagi-Sugeno Fuzzy Model-Based Strategy

2024-04-09
2024-01-1962
Adaptive cruise control is one of the key technologies in advanced driver assistance systems. However, improving the performance of autonomous driving systems requires addressing various challenges, such as maintaining the dynamic stability of the vehicle during the cruise process, accurately controlling the distance between the ego vehicle and the preceding vehicle, resisting the effects of nonlinear changes in longitudinal speed on system performance. To overcome these challenges, an adaptive cruise control strategy based on the Takagi-Sugeno fuzzy model with a focus on ensuring vehicle lateral stability is proposed. Firstly, a collaborative control model of adaptive cruise and lateral stability is established with desired acceleration and additional yaw moment as control inputs. Then, considering the effect of the nonlinear change of the longitudinal speed on the performance of the vehicle system.
Technical Paper

Research on the Control Strategy of Electric Vehicle Active Suspension Based on Fuzzy Theory

2024-04-09
2024-01-2290
The performance of suspension system has a direct impact on the riding comfort and smoothness. For the traditional suspension can not effectively alleviate the impact of road surface and the poor anti-vibration performance, The dynamics model of vehicle suspension system is established, and the control model of vehicle four-degree-of-freedom active suspension is designed with fuzzy control strategy. On this basis, a comprehensive simulation model of the control model of vehicle active suspension coupled with road excitation is established. and the ride comfort of vehicles under different types of suspension are tested through Simulink. The simulation results show that compared with the passive suspension, the reduction of vehicle acceleration and dynamic deformation of the active suspension controlled by fuzzy PID can reach 33.76% and 22.45%. and the reduction of pitch Angle speed and dynamic load of the active suspension controlled by fuzzy PID can reach 16.18% and 10.72%.
Technical Paper

Comparative Analysis of Clustering Algorithms Based on Driver Steering Characteristics

2024-04-09
2024-01-2570
Driver steering feature clustering aims to understand driver behavior and the decision-making process through the analysis of driver steering data. It seeks to comprehend various steering characteristics exhibited by drivers, providing valuable insights into road safety, driver assistance systems, and traffic management. The primary objective of this study is to thoroughly explore the practical applications of various clustering algorithms in processing driver steering data and to compare their performance and applicability. In this paper, principal component analysis was employed to reduce the dimension of the selected steering feature parameters. Subsequently, K-means, fuzzy C-means, the density-based spatial clustering algorithm, and other algorithms were used for clustering analysis, and finally, the Calinski-Harabasz index was employed to evaluate the clustering results. Furthermore, the driver steering features were categorized into lateral and longitudinal categories.
Technical Paper

Biosignal-Based Driving Experience Analysis between Automated Mode and Manual Mode

2024-04-09
2024-01-2504
With the rapid development of intelligent driving technology, there has been a growing interest in the driving comfort of automated vehicles. As vehicles become more automated, the role of the driver shifts from actively engaging in driving tasks to that of a passenger. Consequently, the study of the passenger experience in automated driving vehicles has emerged as a significant research area. In order to examine the impact of automatic driving on passengers' riding experience in vehicle platooning scenarios, this study conducted real vehicle experiments involving six participants. The study assessed the subjective perception scores, eye movement, and electrocardiogram (ECG) signals of passengers seated in the front passenger seat under various vehicle speeds, distances, and driving modes. The results of the statistical analysis indicate that vehicle speed has the most substantial influence on passenger perception.
Technical Paper

Road Recognition Technology Based on Intelligent Tire System Equipped with Three-Axis Accelerometer

2024-04-09
2024-01-2295
Under complex and extreme operating conditions, the road adhesion coefficient emerges as a critical state parameter for tire force analysis and vehicle dynamics control. In contrast to model-based estimation methods, intelligent tire technology enables the real-time feedback of tire-road interaction information to the vehicle control system. This paper proposes an approach that integrates intelligent tire systems with machine learning to acquire precise road adhesion coefficients for vehicles. Firstly, taking into account the driving conditions, sensor selection is conducted to develop an intelligent tire hardware acquisition system based on MEMS (Micro-Electro-Mechanical Systems) three-axis acceleration sensors, utilizing a simplified hardware structure and wireless transmission mode. Secondly, through the collection of real vehicle experiment data on different road surfaces, a dataset is gathered for machine learning training.
Technical Paper

Situational Intelligence-Based Vehicle Trajectory Prediction in an Unstructured Off-Road Environment

2023-04-11
2023-01-0860
Autonomous vehicles (AV) are sophisticated systems comprising various sensors, powerful processors, and complex data processing algorithms that navigate autonomously to their respective goals. Out of several functions performed by an AV, one of the most important is developing situational intelligence to predict collision-free future trajectories. As an AV operates in environments consisting of various entities, such as other AVs, human-driven vehicles, and static obstacles, developing situational intelligence will require a collaborative approach. The recent developments in artificial intelligence (AI) and deep learning (DL) relating to AVs have shown that DL-based models can take advantage of information sharing and collaboration to develop such intelligence.
Journal Article

Trajectory Planning and Tracking for Four-Wheel Independent Drive Intelligent Vehicle Based on Model Predictive Control

2023-04-11
2023-01-0752
This paper proposes a dynamic obstacle avoidance system to help autonomous vehicles drive on high-speed structured roads. The system is mainly composed of trajectory planning and tracking controllers. The potential field (PF) model is introduced to establish a three-dimensional potential field for structured roads and obstacle vehicles. The trajectory planning problem that considers the vehicle’s and tires’ dynamics constraints is transformed into an optimization problem with muti-constraints by combining the model predictive control (MPC) algorithms. The trajectory tracking controller used in this paper is based on the 7 degrees of freedom (DOF) vehicle model and the UniTire tire model, which was discussed in detail in previous work [25, 26]. The controller maintains good trajectory tracking performance even under extreme driving conditions, such as roads with poor adhesion conditions, where the car’s tires enter the nonlinear region easily.
Technical Paper

An Integrated Energy Management and Control Framework for Hybrid Military Vehicles based on Situational Awareness and Dynamic Reconfiguration

2022-03-29
2022-01-0349
As powertrain hybridization technologies are becoming popular, their application for heavy-duty military vehicles is drawing attention. An intelligent design and operation of the energy management system (EMS) is important to ensure that hybrid military vehicles can operate efficiently, simultaneously maximize fuel economy and minimize monetary cost, while successfully completing mission tasks. Furthermore, an integrated EMS framework is vital to ensure a functional vehicle power system (VPS) to survive through critical missions in a highly stochastic environment, when needed. This calls for situational awareness and dynamic system reconfiguration capabilities on-board of the military vehicle. This paper presents a new energy management and control (EMC) framework based on holistic situational awareness (SA) and dynamic reconfiguration of the VPS.
Journal Article

Virtual Evaluation of Deep Learning Techniques for Vision-Based Trajectory Tracking

2022-03-29
2022-01-0369
Artificial intelligence (AI) enhanced control system deployments are emerging as a viable substitute to more traditional control system. In particular, deep learning techniques offer an alternate approach to tune the ever increasing sets of control system parameters to extract performance. However, the systematic verification and validation (to establish the reliability and robustness) of deep learning based controllers in actual deployments remains a challenge. This is exacerbated by the need to evaluate and optimize control systems embedded within an operational environment (with its own sets of additional unknown or uncertain parameters). Existing literature comparisons of deep learning against traditional controllers, where they may exist, do not offer structured approaches to comparative performance evaluation and improvement. It is also crucial to develop a standardized controlled test environment within which various controllers are evaluated against a common metric.
Technical Paper

Neural Network Design of Control-Oriented Autoignition Model for Spark Assisted Compression Ignition Engines

2021-09-05
2021-24-0030
Substantial fuel economy improvements for light-duty automotive engines demand novel combustion strategies. Low temperature combustion (LTC) demonstrates potential for significant fuel efficiency improvement; however, control complexity is an impediment for real-world transient operation. Spark-assisted compression ignition (SACI) is an LTC strategy that applies a deflagration flame to generate sufficient energy to trigger autoignition in the remaining charge. Operating a practical engine with SACI combustion is a key modeling and control challenge. Current models are not sufficient for control-oriented work such as calibration optimization, transient control strategy development, and real-time control. This work describes the process and results of developing a fast-running control-oriented model for the autoignition phase of SACI combustion. A data-driven model is selected, specifically artificial neural networks (ANNs).
Technical Paper

Short-Term Vehicle Speed Prediction Based on Back Propagation Neural Network

2021-08-10
2021-01-5081
In the face of energy and environmental problems, how to improve the economy of fuel cell vehicles (FCV) effectively and develop intelligent algorithms with higher hydrogen-saving potential are the focus and difficulties of current research. Based on the Toyota Mirai FCV, this paper focuses on the short-term speed prediction algorithm based on the back propagation neural network (BP-NN) and carries out the research on the short-term speed prediction algorithm based on BP-NN. The definition of NN and the basic structure of the neural model are introduced briefly, and the training process of BP-NN is expounded in detail through formula derivation. On this basis, the speed prediction model based on BP-NN is proposed. After that, the parameters of the vehicle speed prediction model, the characteristic parameters of the working condition, and the input and output neurons are selected to determine the topology of the vehicle speed prediction model.
Technical Paper

Arrangement and Control Method of Cooperative Vehicle Platoon

2021-04-06
2021-01-0113
With the development of cellular communication technology and for the sake of reducing drag resistance, the multi-lane platoon technology will be more prosperous in the future. In this article, the cooperative vehicle platoon method on the public road is represented. The method’s architecture is mainly composed of the following parts: decision-making, path planning and control command generation. The decision-making uses the finite state machine to make decision and judgment on the cooperative lane change of vehicles, and starts to execute the lane change step when the lane change requirements are met. In terms of path planning, with the goal of ensuring comfort, the continuity of the vehicle state and no collision between vehicles, a fifth-order polynomial is used to fit every vehicle trajectory. In terms of control command generation module, a model predictive control algorithm is used to solve the multi-vehicle centralized optimization control problem.
Technical Paper

Research on Adaptive Cruise Control Strategy Considering the Disturbance of Preceding Vehicle and Multi-Objective Optimization

2021-04-06
2021-01-0338
Adaptive Cruise Control (ACC) includes three modes: cruise control, car following control, and autonomous emergency braking. Among them, the car following control mode is mainly used to manage the speed and vehicle spacing approach the preceding vehicle within the range of smooth acceleration changes. In addition, although the motion information signal of the preceding vehicle can be collected by auxiliary equipment, it is still a random variable and normally regarded as a disturbance to affect the performance of vehicle controller. Therefore, this paper proposed an ACC strategy considering the disturbance of the preceding vehicle and multi-objective optimization.
Technical Paper

A Numerical Simulation for the Hybrid Single Shot (HSS) Process Used to Manufacture Thermoset-Thermoplastic Components

2021-04-06
2021-01-0350
Multi-material design is one of the trending methods for automakers to achieve lightweighting cost-efficiently and meet stringent regulations and fuel efficiency concerns. Motivated by this trend, the hybrid single-shot (HSS) process has been recently introduced to manufacture thermoset-thermoplastic composites in one single integrated operation. Although this integration is beneficial in terms of reducing the cycle time, production cost, and manufacturing limitations associated with such hybrid structures, it increases the process complexity due to the simultaneous filling, forming, curing, and bonding actions occurring during the process. To overcome this complexity and have a better understanding on the interaction of these physical events, a quick yet accurate simulation of the HSS process based on an experimentally calibrated numerical approach is presented here to elucidate the effect of different process settings on the final geometry of the hybrid part.
Technical Paper

Intelligent Deceleration Energy-Saving Control Strategy for Electric Vehicle

2021-04-06
2021-01-0123
In order to improve the vehicle economy of electric vehicles, this paper first analyzes the energy-saving mechanism of electric vehicles. Taking the energy consumption of the deceleration process as a starting point, this paper deeply analyzes the energy consumption of the deceleration process under several different control modes by the test data, so as to obtain two principles that should be followed in energy-saving control strategy. Then, an intelligent deceleration energy-saving control strategy by getting the forward vehicle information is developed. The overall architecture of the control strategy consists of three parts: information processing, target calculation and torque control. The first part is mainly to obtain the forward vehicle information from the perception systems, and the user's habits information from big data, and this information is processed for the next part.
Technical Paper

Fast Engine Torque Variation Compensation for HEVs Using Permanent Magnet Synchronous Motor and Explicit MPC

2021-04-06
2021-01-0718
This research proposes to leverage the fast response time of Permanent Magnet Synchronous Motors (PMSMs) to compensate for crank angle resolved engine torque variations caused by cycle-by-cycle combustion variations. This method reduces powertrain vibration and enables engine calibrations with high combustion variation that produces low fuel consumption. This research integrates a Field Oriented Control (FOC) strategy with an Explicit Model Predictive Control (EMPC) to trace previewed current references. The previewed current references are computed from the engine torque difference between predicted nominal operation and the measured torque output. This research reveals that the MPC can track a d-q current reference without overshoot, rendering current magnitude constraints unnecessary in the MPC formulation. A control rate penalty is used to tune the aggressiveness of transient voltage demand and meet with the DC voltage limit.
Journal Article

Automatic Formal Verification of SysML State Machine Diagrams for Vehicular Control Systems

2021-04-06
2021-01-0260
Vehicular control systems are characterized with numerous complex interactions with a steady rise of autonomous functions, which makes it more challenging for designers and safety engineers to identify unexpected failures. These systems tend to be highly integrated and exhibit features like concurrency for which traditional verification and validation techniques (i.e. testing and simulation) are insufficient to provide rigorous and complete assessment. Model Checking, a well-known formal verification technique, can be used to rigorously prove the correctness of such systems according to design Requirements. In particular, Model Checking is a method for formally verifying finite-state concurrent systems. Specifications about the system are expressed as temporal logic formulas, and efficient symbolic algorithms are used to traverse the model defined by the system and check if the specification holds or not.
Journal Article

The Control Strategy for 4WD Hybrid Vehicle Based on Wavelet Transform

2021-04-06
2021-01-0785
In this paper, in order to avoid the frequent switching of engine operating points and improve the fuel economy during driving, this paper proposes a control strategy for the 4-wheel drive (4WD) hybrid vehicle based on wavelet transform. First of all, the system configuration and the original control strategy of the 4WD hybrid vehicle were introduced and analyzed, which summarized the shortcomings of this control strategy. Then, based on the analyze of the original control strategy, the wavelet transform was used to overcome its weaknesses. By taking advantage over the superiority of the wavelet transform method in multi signal disposition, the demand power of vehicle was decomposed into the stable drive power and the instantaneous response power, which were distributed to engine and electric motor respectively. This process was carried out under different driving modes.
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

2020-04-14
2020-01-0586
The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Technical Paper

Personalized Human-Machine Cooperative Lane-Changing Based on Machine Learning

2020-04-14
2020-01-0131
To reduce the interference and conflict of human-machine cooperative control, lighten the operation workload of drivers, and improve the friendliness and acceptability of intelligent vehicles, a personalized human-machine cooperative lane-change trajectory tracking control method was proposed. First, a lane-changing driving data acquisition test was carried out to collect different driving behaviors of different drivers and form the data pool for the machine learning method. Two typical driving behaviors from an aggressive driver and a moderate driver are selected to be studied. Then, a control structure combined by feedforward and feedback control based on Long Short Term Memory (LSTM) and model-based optimum control was introduced. LSTM is a machine learning method that has the ability of memory. It is used to capture the lane-changing behaviors of each driver to achieve personalization. For each driver, a specific personalized controller is trained using his driving data.
X