Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

High-Precision Autonomous Parking Localization System based on Multi-Sensor Fusion

2024-04-09
2024-01-2843
This paper addresses the issues of long-term signal loss in localization and cumulative drift in SLAM-based online mapping and localization in autonomous valet parking scenarios. A GPS, INS, and SLAM fusion localization framework is proposed, enabling centimeter-level localization with wide scene adaptability at multiple scales. The framework leverages the coupling of LiDAR and Inertial Measurement Unit (IMU) to create a point cloud map within the parking environment. The IMU pre-integration information is used to provide rough pose estimation for point cloud frames, and distortion correction, line and plane feature extraction are performed for pose estimation. The map is optimized and aligned with a global coordinate system during the mapping process, while a visual Bag-of-Words model is built to remove dynamic features.
Technical Paper

A Survey of Vehicle Dynamics Models for Autonomous Driving

2024-04-09
2024-01-2325
Autonomous driving technology is more and more important nowadays, it has been changing the living style of our society. As for autonomous driving planning and control, vehicle dynamics has strong nonlinearity and uncertainty, so vehicle dynamics and control is one of the most challenging parts. At present, many kinds of specific vehicle dynamics models have been proposed, this review attempts to give an overview of the state of the art of vehicle dynamics models for autonomous driving. Firstly, this review starts from the simple geometric model, vehicle kinematics model, dynamic bicycle model, double-track vehicle model and multi degree of freedom (DOF) dynamics model, and discusses the specific use of these classical models for autonomous driving state estimation, trajectory prediction, motion planning, motion control and so on.
Technical Paper

Vehicle Yaw Stability Model Predictive Control Strategy for Dynamic and Multi-Objective Requirements

2024-04-09
2024-01-2324
Vehicle yaw stability control (YSC) can actively adjust the working state of the chassis actuator to generate a certain additional yaw moment for the vehicle, which effectively helps the vehicle maintain good driving quality under strong transient conditions such as high-speed turning and continuous lane change. However, the traditional YSC pursues too much driving stability after activation, ignoring the difference of multi-objective requirements of yaw maneuverability, actuator energy consumption and other requirements in different vehicle stability states, resulting in the decline of vehicle driving quality. Therefore, a vehicle yaw stability model predictive control strategy for dynamic and multi-objective requirements is proposed in this paper. Firstly, the unstable characteristics of vehicle motion are analyzed, and the nonlinear two-degree-of-freedom vehicle dynamics models are established respectively.
Technical Paper

Data-Enabled Human-Machine Cooperative Driving Decoupled from Various Driver Steering Characteristics and Vehicle Dynamics

2024-04-09
2024-01-2333
Human driving behavior's inherent variability, randomness, individual differences, and dynamic vehicle-road situations give human-machine cooperative (HMC) driving considerable uncertainty, which affects the applicability and effectiveness of HMC control in complex scenes. To overcome this challenge, we present a novel data-enabled game output regulation approach for HMC driving. Firstly, a global human-vehicle-road (HVR) model is established considering the varied driver's steering characteristic parameters, such as delay time, preview time, and steering gain, as well as the uncertainty of tire cornering stiffness and variable road curvature disturbance. The robust output regulation theory has been employed to ensure the global DVR system's closed-loop stability, asymptotic tracking, and disturbance rejection, even with an unknown driver's internal state. Secondly, an interactive shared steering controller has been designed to provide personalized driving assistance.
Technical Paper

Torque Vectoring for Lane-Changing Control during Steering Failures in Autonomous Commercial Vehicles

2024-04-09
2024-01-2328
Lane changing is an essential action in commercial vehicles to prevent collisions. However, steering system malfunctions significantly escalate the risk of head-on collisions. With the advancement of intelligent chassis control technologies, some autonomous commercial vehicles are now equipped with a four-wheel independent braking system. This article develops a lane-changing control strategy during steering failures using torque vectoring through brake allocation. The boundaries of lane-changing capabilities under different speeds via brake allocation are also investigated, offering valuable insights for driving safety during emergency evasions when the steering system fails. Firstly, a dual-track vehicle dynamics model is established, considering the non-linearity of the tires. A quintic polynomial approach is employed for lane-changing trajectory planning. Secondly, a hierarchical controller is designed.
Technical Paper

Commercial Vehicle's Longitudinal Deceleration Precise Control Considering Vehicle-Actuator Dynamic Characteristics

2024-04-09
2024-01-2313
The installation of the Electronic Braking System (EBS) could effectively improve braking response speed, shorten braking distance, and ensure driving safety of commercial vehicles. However, during longitudinal deceleration control process, the commercial vehicles face not only challenges such as large inertia mass and random road gradient resistance of the vehicle layer, but also non-linear characteristics of the EBS actuator layer. In order to solve these problems, this paper proposes a commercial vehicle’s longitudinal deceleration precise control strategy considering vehicle-actuator dynamic characteristics. First, longitudinal dynamics of commercial vehicle is analyzed, and so is the EBS’ non-linear response hysteresis characteristics. Then, we design the dual layer deceleration control strategy. In vehicle layer, the recursive least squares with forgetting factor and Kalman filtering are comprehensively applied to dynamically estimate the vehicle mass and driving road slope.
Technical Paper

Optical diagnostic study on ammonia-diesel and ammonia-PODE dual fuel engines

2024-04-09
2024-01-2362
Ammonia shows promise as an alternative fuel for internal combustion engines (ICEs) in reducing CO2 emissions due to its carbon-free nature and well-established infrastructure. However, certain drawbacks, such as the high ignition energy, the narrow flammability range, and the extremely low laminar flame speed, limit its widespread application. The dual fuel (DF) mode is an appealing approach to enhance ammonia combustion. The combustion characteristics of ammonia-diesel dual fuel mode and ammonia-PODE3 dual fuel mode were experimentally studied using a full-view optical engine and the high-speed photography method. The ammonia energy ratio (ERa) was varied from 40% to 60%, and the main injection energy ratio (ERInj1) and the main injection time (SOI1) were also varied in ammonia-PODE3 mode.
Technical Paper

Deformation Analysis on In-Plane Loading of Prismatic Cell

2024-04-09
2024-01-2060
The collision accidents of electric vehicles are gradually increasing, and the response of battery cell under mechanical abuse conditions has attracted more and more attention. In the real collision, the mechanical load on battery generally has the following characteristics, including multiple loading directions, dynamic impact and blunt intrusion. Therefore, it is necessary to study the mechanical response and deformation of battery under complex loading, especially in-plane dynamic loading condition. According to the actual accident, we designed the constrained blunt compression test of the battery in different speeds and directions. For out-of-plane loading, the structural stiffness of battery increases obviously and the fracture is advanced compared with the corresponding quasi-static tests. For in-plane constrained loading, the force response can be approximately divided into two linear segments, in which the structural stiffness increases abruptly after the inflection point.
Technical Paper

Application Study of Solar Energy and Heat Management System Utilizing Phase Change Materials in Parking Facilities

2024-04-09
2024-01-2451
Ambient temperature is a very sensitive use condition for electric vehicles (EVs), so it is imperative to ensure the maintenance of suitable temperature. This is particularly important in regions characterized by prolonged exposure to unfavorable temperature conditions. In such cases, it becomes necessary to implement insulation measures within parking facilities and allocate energy resources to sustain a desired temperature level. Solar energy is a renewable and environmentally friendly source of energy that is widely available. However, the effectiveness of utilizing solar energy is influenced by various factors, such as the time of day and weather conditions. The use of phase change material (PCM) in a latent heat energy storage (LHES) system has gained significant attention in this field. In contrast to single-phase energy storage materials, PCM offer a more effective heat storage capacity.
Technical Paper

Economic Analysis of Online DC-Drive System for Long Distance Heavy-Duty Transport Vehicle Incorporating Multi-Factor Sensitivities

2024-04-09
2024-01-2452
Currently, the rapid expansion of the global road transport industry and the imperative to reduce carbon emissions are propelling the advancement of electrified highways (EH). In order to conduct a comprehensive economic analysis of EH, it is crucial to develop a detailed /8.and comprehensive economic model that takes into account various transportation modes and factors that influence the economy. However, the existing economic models for EH lack comprehensiveness in terms of considering different transportation modes and economic factors. This study aims to fill this gap by designing an economic model for an EH-based Online DC-driven system (ODS) for long distance heavy-duty transport vehicle incorporating multi-factor sensitivities. Firstly, the performance parameters of the key components of the system are calculated using vehicle dynamics equations which involves selecting and matching the relevant components and determining the fundamental cost of vehicle transformation.
Technical Paper

Steering Angle Safety Control for Redundant Steering System Considering Motor Winding’s Various Faults

2024-04-09
2024-01-2520
Reliable and safe Redundant Steering System (RSS) equipped with Dual-Winding Permanent Magnet Synchronous Motor (DW-PMSM) is considered an ideal actuator for future autonomous vehicle chassis. The built-in DW-PMSM of the RSS is required to identify various winding’s faults such as disconnection, open circuit, and grounding. When achieving redundant control through winding switching, it is necessary to suppress speed fluctuations during the process of winding switching to ensure angle control precision. In this paper, a steering angle safety control for RSS considering motor winding’s faults is proposed. First, we analyze working principle of RSS. Corresponding steering system model and fault model of DW-PMSM have been established. Next, we design the fault diagnosis and fault tolerance strategy of RSS.
Technical Paper

Constraint-based Modeling of Fuel-spray Boundary Flow Fields under Sub-cooled and Flash-boiling Conditions

2024-04-09
2024-01-2621
The continuous improvement of spark-ignition direct-injection (SIDI) engines is largely attributed to the enhanced understanding of air-fuel mixing and combustion processes. The intricate interaction between transient spray behavior and the ambient flow field is important to unveil the airflow dynamics during the spray injection process. This study investigates the fuel-spray boundary interactions under different superheated conditions by analyzing the ambient flow field pattern with constraint-based modeling (CBM). In the experimental setup, superheated conditions are facilitated by adjusting different fuel temperatures and ambient pressures. By adding the tracer particles containing Rhodamine 6G to the ambient air, the combined diagnostic of fluorescent particle image velocimetry (FPIV) and Mie-scattering is implemented to measure the velocity distribution and flow trajectory of the air surrounding the spray formation and propagation.
Technical Paper

Research on the Oscillation Reduction Control During Mode Transition in Hybrid Electric Vehicles

2024-04-09
2024-01-2720
In order to realize the series-parallel switching control of hybrid electric vehicle (HEV) with dual-motor hybrid configuration, a method of unpowered interrupt switching based on the coordinated control of three power sources was proposed by analyzing the series-parallel driving mode of the dual-motor hybrid configuration. The series to parallel switching process is divided into three stages: speed regulation stage, clutch combination and power source switching. The distribution control of speed regulating torque is carried out in the speed regulating stage. The speed adjustment torque is preferentially allocated to the power source of the input shaft (engine and P1) to carry out the lifting torque. Due to the high speed adjustment accuracy and fast response of the P1 motor, the input shaft is preferentially allocated to P1 for speed adjustment, that is, the torque intervention of P1.
Technical Paper

Research on the Oscillation Reduction Control During High Voltage Battery Failure in Hybrid Electric Vehicles

2024-04-09
2024-01-2717
In order to achieve seamless mode switching control for hybrid electric vehicles (HEVs) in the event of battery failure, we propose a motor voltage-controlled mode switching method that eliminates power interruptions. This approach is based on an analysis of the dual-motor hybrid configuration's mode switching. We analyze the overall vehicle operation when the high-voltage battery occurs in different hybrid modes. To ensure that the vehicle can still function like a conventional car under such circumstances, we introduce a novel "voltage control" mode. In this mode, instead of operating in its traditional torque control manner, the P1 motor adopts a voltage control strategy. The P1 controller's variable becomes "voltage," and VCU sends the motor's working mode switching request and PCM finishes the mode transition. During system operation, the P1 motor promptly responds to these target voltages to maintain bus voltage within a normal range.
Technical Paper

Lyapunov Exponent Based Stability Analysis for a High-Dimensional Nonlinear Vehicle System Under Extreme Condition

2024-04-09
2024-01-2756
The vehicle stability assessment system is an indispensable component to ensure driving safety and enhance vehicle motion control, whether for automated or human-driven vehicles, especially in extreme operating conditions. However, the existing stability assessment methods tend to be conservative and often ignore the coupled longitudinal and lateral dynamics, as well as the nonlinear characteristics of tires. To evaluate the vehicle stability accurately and quickly, an 8-degree-of-freedom (DOF) vehicle dynamic model is constructed first, considering the nonlinear characteristics of tires through a physics-based approach. Subsequently, the vehicle and environment parameters are auto-tuned using Bayesian optimization with field test data. Based on the adjusted vehicle model, a Lyapunov exponent (LE) based vehicle stability analysis method is proposed to quantitatively assess the stability of the vehicle state and determine the corresponding stability boundary.
Technical Paper

Research on Coordinated Control during Mode Transition in Hybrid Electric Vehicles

2024-04-09
2024-01-2788
Due to the objectives of achieving high fuel efficiency and drivability performance, a dual-drive hybrid system with two motors has been developed. Various drive modes are presented based on engine status, requested driver torque and power, as well as C0 status in different working conditions. The transition control of drive mode change poses a unique challenge for the dual-drive hybrid system. This study discusses the control strategies for transitioning between drive modes. The first type of transition mode is divided into four distinct phases. In the second mode transition, there are three phases: the synchronization phase involving P1 torque intervention, the C0 lock-up phase involving frozen P1 torque control and adjustment of C0 clutch torque and pressure correlation, and finally, the torque exchange phase. The third type of transition includes a dedicated torque transition phase followed by a C0 disengaged phase and concluding with a speed synchronization phase.
Technical Paper

Road Recognition Technology Based on Intelligent Tire System Equipped with Three-Axis Accelerometer

2024-04-09
2024-01-2295
Under complex and extreme operating conditions, the road adhesion coefficient emerges as a critical state parameter for tire force analysis and vehicle dynamics control. In contrast to model-based estimation methods, intelligent tire technology enables the real-time feedback of tire-road interaction information to the vehicle control system. This paper proposes an approach that integrates intelligent tire systems with machine learning to acquire precise road adhesion coefficients for vehicles. Firstly, taking into account the driving conditions, sensor selection is conducted to develop an intelligent tire hardware acquisition system based on MEMS (Micro-Electro-Mechanical Systems) three-axis acceleration sensors, utilizing a simplified hardware structure and wireless transmission mode. Secondly, through the collection of real vehicle experiment data on different road surfaces, a dataset is gathered for machine learning training.
Technical Paper

Research on Motor Control and Application in Dual Motor Hybrid System

2024-04-09
2024-01-2220
This paper analyzes the current control, mode control and boost strategy of permanent magnet synchronous motor in dual hybrid system, which has good stability and robustness. Current control includes current vector control, MTPA control, flux weakening control, PI current control and SVPWM control. Motor mode includes initialization mode, normal mode, fault mode, active discharge mode, power off mode, battery heating mode and boost mode. The boost strategy of the hybrid system is based on boost mode management, boost target voltage determination and boost PI control. The specific content is as follows: Boost mode control. Boost mode includes initial mode, normal mode, off mode and fault mode. Boost target voltage is determined. Boost converter is controlled by variable voltage, which depends on the operation status of the motor and generator..
Technical Paper

Integrated Decision-Making and Planning Method for Autonomous Vehicles Based on an Improved Driving Risk Field

2023-12-31
2023-01-7112
The driving risk field model offers a feasible approach for assessing driving risks and planning safe trajectory in complex traffic scenarios. However, the conventional risk field fails to account for the vehicle size and acceleration, results in the same trajectories are generated when facing different vehicle types and unable to make safe decisions in emergency situations. Therefore, this paper firstly introduces the acceleration and vehicle size of surrounding vehicles for improving the driving risk model. Then, an integrated decision-making and planning model is proposed based on the combination of the novelty risk field and model predictive control (MPC), in which driving risk and vehicle dynamics constraints are taken into consideration. Finally, the multiple driving scenarios are designed and analyzed for validate the proposed model.
Technical Paper

A Rolling Prediction-Based Multi-Scale Fusion Velocity Prediction Method Considering Road Slope Driving Characteristics

2023-12-20
2023-01-7063
Velocity prediction on hilly road can be applied to the energy-saving predictive control of intelligent vehicles. However, the existing methods do not deeply analyze the difference and diversity of road slope driving characteristics, which affects prediction performance of some prediction method. To further improve the prediction performance on road slope, and different road slope driving features are fully exploited and integrated with the common prediction method. A rolling prediction-based multi-scale fusion prediction considering road slope transition driving characteristics is proposed in this study. Amounts of driving data in hilly sections were collected by the advanced technology and equipment. The Markov chain model was used to construct the velocity and acceleration joint state transition characteristics under each road slope transition pair, which expresses the obvious driving difference characteristics when the road slope changes.
X