Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Study of Soot Formation Process in a Jet-jet Interaction Region of Diesel Spray Flames with LII/LS Measurement

2023-09-29
2023-32-0088
In a rapid compression and expansion machine (RCEM), spray flames from a two-hole injector are injected toward a wall to achieve jet-jet interaction after spray flames impinge onto the wall. Simultaneous laser-induced incandescence (LII) and laser scattering (LS) measurements were performed to investigate the soot formation process in the jet-jet interaction zone. The results showed that high LII and LS signals were detected in the interaction region and persisted for a considerable period and that soot particle size in the interaction zone was independent of the time and injection pressure.
Technical Paper

Numerical Analysis of Wind Noise Transmission through BEV Underbody

2023-05-08
2023-01-1119
In electrified automobiles, wind noise significantly contributes to the overall noise inside the cabin. In particular, underbody airflow is a dominant noise source at low frequencies (less than 500 Hz). However, the wind noise transmission mechanism through a battery electric vehicle (BEV) underbody is complex because the BEV has a battery under the floor panel. Although various types of underbody structures exist for BEVs, in this study, the focus was on an underbody structure with two surfaces as inputs of wind noise sources: the outer surface exposed to the external underbody flow, such as undercover and suspension, and the floor panel, located above the undercover and battery. In this study, aero-vibro-acoustic simulations were performed to clarify the transmission mechanism of the BEV underbody wind noise. The external flow and acoustic fields were simulated using computational fluid dynamics.
Technical Paper

Evaluation of Equivalent Temperature in Vehicle Cabin by a Mesh-Free Simulation—Part 3: Evaluation of Equivalent Temperature under Transient Heating Condition

2022-03-29
2022-01-0192
This paper describes the equivalent temperature based on the mesh-free simulation proposed by the previous papers (Part1 and Part2) under the transient heating condition in a 3D-CAD vehicle cabin including the thermal manikin which takes into account the clothing shape. For this purpose, firstly, the experiments of vehicle cabin measuring for the thermal environment including the equivalent temperature are carried out under the transient heating condition. Then, the calculated results of the thermal environment in the vehicle cabin are compared with time series experimental data under the transient condition. They correspond to the experiments including transient changes well. The transient calculated equivalent temperature of thermal manikin is also compared with experiments. As a result, since it is difficult to control the thermal manikin ideally in the experiment, it is difficult to compare the transient behavior.
Technical Paper

Evaluation of Equivalent Temperature Using Thermal Factors : Validation of a Calculation Method Based on ISO 14505-4:2021 in a Vehicle Cabin

2022-03-29
2022-01-0190
This paper describes a method for evaluating the equivalent temperature in vehicle cabins based on the new international standard ISO 14505-4, published in 2021. ISO 14505-4 defines two simulation methods to determine a thermal comfort index “equivalent temperature.” One method uses a numerical thermal manikin, and the other uses thermal factors to calculate. This study discusses the latter method to validate its accuracy, identify the key points to consider, and examine its advantages and disadvantages. First, the definition of equivalent temperature and the equation to calculate the equivalent temperature using thermal factors, such as air temperature, radiant temperature, solar radiation, and air velocity, are explained. In addition, the experiments and simulation methods are described.
Technical Paper

Numerical Analysis and Modeling for the Exhaust Pulsating Flow around a Prism Inserted in a Pipe

2021-04-06
2021-01-0603
For the measurements of flow rate, pressure and/or temperature in an engine exhaust pipe, probes are often inserted into the exhaust pipe depending on the application. These measurement probes differ a lot in terms of their size and shape. The flow around the probes become further complicated due to the pulsation of engine exhaust flow. In this study, computational fluid dynamics (CFD) simulations were carried out and a zero-dimensional (0D) model was constructed to analyze the flow field around the probe and flow rate of a pulsating flow. The simulations and the measurements of the flow rate and pressure were performed on flows around a hexagonal prism inserted in a circular pipe which is intended to be a differential pressure flow meter. The velocity field was also measured using the particle image velocimetry (PIV) technique. The CFD simulation results were validated with the experiments for both steady and pulsating flows.
Journal Article

Effect of Jet-Jet Angle on Combustion Process of Diesel Spray in an RCEM

2020-09-15
2020-01-2058
The effects of jet-jet angle on the combustion process were investigated in an optical accessible rapid compression and expansion machine (RCEM) under various injection conditions and intake oxygen concentrations. The RCEM was equipped with an asymmetric six-hole nozzle having jet-jet angles of 30° and 45°. High-speed OH* chemiluminescence imaging and direct photo imaging using the Mie scattering method captured the transient evolution of the spray flame, characterized by lift-off length and liquid length. The RCEM operated at 1200 rpm. The injection timing was -5°ATDC, and the in-cylinder pressure and temperature were 6.1 MPa and 780 K at the injection timing, respectively, which achieved a short ignition delay. The effects of injection pressure, nozzle hole diameter, and oxygen concentration were investigated.
Technical Paper

Impact of EV Charging on Power System with High Penetration of EVs: Simulation and Quantitative Analysis Based on Real World Usage Data

2020-04-14
2020-01-0531
The adoption of electric vehicles (EVs) has been announced worldwide with the aim of reducing CO2 emissions. However, a significant increase in electricity demand by EVs might impact the stable operation of the existing power grid. Meanwhile, EV charging is acceptable to most users if it is completed by the time of the next driving event. From the viewpoint of power grid operators, flexibility for shifting the timing of EV charging would be advantageous, including making effective use of renewable energy. In this work, an EV model and simulation tool were developed to make clear how the total charging demand of all EVs in use will be influenced by future EV specifications (e.g., charge power) and installation of charging infrastructure. Among the most influential factors, EV charging behavior according to use cases and regional characteristics were statistically analyzed based on the real-world usage data of over 14, 000 EVs and incorporated in the simulation tool.
Technical Paper

Comparison of Head Kinematics of Bicyclist in Car-to-Bicycle Impact

2020-04-14
2020-01-0932
This study focused on European NCAP activities of introducing a new head protection evaluation procedure, as proposed by BASt (Federal Highway Research Institute - GERMANY). Various kinds of E-bikes are available in the market, ranging from E-bikes that have a small motor to assist the rider’s pedal-power i.e., pedelecs to somewhat more powerful E-bikes which is similar to a moped-style scooter. This paper focused on identifying the factors influencing bicyclist head kinematics during bicycle vs. passenger vehicle (PV) collisions at the intersection. Two AM50 bicyclist FE models are developed using i) GHBMC Human Body Model (HBM) and ii) WorldSID (WS) side impact dummy. Head kinematics of bicyclists of pedal-assist E-bike and normal bike were compared using CAE simulation. It is found that the vehicle’s impact velocity, type of bicycle, the mass of E-bike and bicycle traveling speed will influence the head kinematics.
Technical Paper

Aerodynamic Sensitivity Analysis of Tire Shape Factors

2020-04-14
2020-01-0669
It is well known that the wheels and tires account for approximately 25% of the overall aerodynamic drag of a vehicle. This is because the contribution of the tires to aerodynamic drag stems from not only aerodynamic drag itself directly caused by exposure to the main flow (tire CD), but also from aerodynamic drag indirectly caused by the interference between tire wakes and the upper body flow (body CD). In the literature, as far as the authors are aware, there have been no reports that have included the following all four aspects at once: (1) CD sensitivity to detailed tire shape factors; (2) CD sensitivity differences due to different vehicle body types; (3) CD sensitivity for each aerodynamic drag component, i.e., tire CD and body CD; (4) Flow structure and mechanism contributing to each aerodynamic drag component. The purpose of this study was to clarify CD sensitivity to tire shape factors for tire CD and body CD considering two different vehicle body types, sedan and SUV.
Technical Paper

Effects of Piston Bowl Diameter on Combustion Characteristics of a Natural gas/Diesel Dual Fuel Engine

2019-12-19
2019-01-2173
Natural gas/diesel dual fuel engines have potential for a high thermal efficiency and low NOx emissions. However, they have the disadvantages of high unburned species emissions and lower thermal efficiencies at low loads (at low equivalence ratio). A way to solve this problem is to properly distribute the pilot fuel vapor in a natural-gas premixture. The combustion chamber geometry affects the combustion process since it influences the distribution of the pilot fuel vapor. This study investigates the influence of injection conditions and the piston bowl geometry on the performance and emissions of a dual fuel engine. Experiments were carried out using two pistons with different bowl diameters, 52 mm and 58 mm, at single-and two-stage diesel-fuel injection. The results show that the larger bowl provides lower hydrocarbon emissions at a lower equivalence ratio in the case of single-stage injection.
Technical Paper

Study on Characteristics of Combined PCCI and Conventional Diesel Combustion

2019-12-19
2019-01-2169
The main objective of this study is to evaluate the characteristics of combustion that combine premixed charge compression ignition (PCCI)-based combustion with conventional mixing controlled combustion. In this type of combustion, it is supposed that the combustion duration is shortened due to the synchronization of the timing of two types of combustions. In addition, the cooling loss caused by spray impingement is expected to decrease by the reduction of the proportion of mixing controlled combustion. In this study, the effect of injection pressure, injection timing, and split injection on thermal efficiency and emissions were investigated in order to determine the appropriate injection parameters for PCCI-based combustion to realize the proposed combustion concept.
Technical Paper

New CO2 / Fuel Consumption Certification Cycles and Design Implications for Fuel Efficient Lubricants

2019-12-19
2019-01-2367
During this decade, the constant increase and globalization of passenger car sales has led countries to adopt a common language for the treatment of CO2 and other pollutant emissions. In this regard, the WLTC - World-wide harmonized Light duty Test Cycle - stands as the new global reference cycle for fuel consumption, CO2 and pollutant emissions across the globe. Regulations keep a constant pressure on CO2 emission reduction leading vehicle manufacturers and component suppliers to modify hardware to ensure compliance. Within this balance, lubricants remain worthwhile contributors to lowering CO2 emission and fuel consumption. Yet with WTLC, new additional lubricant designs are likely to be required to ensure optimized friction due to its new cycle operating conditions, associated powertrain hardware and worldwide product use.
Journal Article

Low Friction and Low Viscosity Final Drive Oil

2019-12-19
2019-01-2336
The new lubricant was newly developed for differential gear unit to contribute to all friction factors/conditions (Boundary, Hydrodynamic & those Mixed Lubrication) even if the differential gear is operating under very severe conditions such as high-gear-contact pressure and highly sliding speed. The main concept of development was selecting and formulating the optimized additives for severe lubrication conditions in order to achieve the best balance between thinner-film thickness and extreme pressure performance. In conclusion, by the application of both synthetic base oil instead of mineral one and activation technology of MoDTC in spite of ZnDTP free formulation, it is finally realized to reduce the torque of final drive unit by 40% and it can be estimated the 0.5% of CO2 reduction in actual vehicles.
Technical Paper

Evaluation of Equivalent Temperature in a Vehicle Cabin with a Numerical Thermal Manikin (Part 2): Evaluation of Thermal Environment and Equivalent Temperature in a Vehicle Cabin

2019-04-02
2019-01-0698
In the previous paper (Part 1), measurements of equivalent temperature (teq) using a clothed thermal manikin and modeling of the clothed thermal manikin for teq simulation were discussed. In this paper (Part 2), the outline of the proposed mesh-free simulation method is described and comparisons between teq in the calculations and measurements under summer cooling with solar radiation and winter heating without solar radiation conditions in a vehicle cabin are discussed. The key factors for evaluating teq on each body segment of the clothed thermal manikin under cooling and heating conditions are also discussed. In the mesh-free simulation, even if there is a hole or an unnecessary shape on the CAD model, only a group of points whose density is controlled in the simulation area is generated without modifying the CAD model. Therefore, the fluid mesh required by conventional CFD code is not required, and the analysis load is significantly reduced.
Technical Paper

Evaluation of Equivalent Temperature in a Vehicle Cabin with a Numerical Thermal Manikin (Part 1): Measurement of Equivalent Temperature in a Vehicle Cabin and Development of a Numerical Thermal Manikin

2019-04-02
2019-01-0697
The present paper is Part 1 of two consecutive studies. Part 1 describes three subjects: definition of the equivalent temperature (teq), measurements of teq using a clothed thermal manikin in a vehicle cabin, and modeling of the clothed thermal manikin for teq simulation. After defining teq, a method for measuring teq with a clothed thermal manikin was examined. Two techniques were proposed in this study: the definition of “the total heat transfer coefficient between the skin surface and the environment in a standard environment (hcal)” based on the thermal insulation of clothing (Icl), and a method of measuring Icl in consideration of the area factor (fcl), which indicates the ratio of the clothing surface to the manikin surface area. Then, teq was measured in an actual vehicle cabin by the proposed method under two conditions: a summer cooling condition with solar radiation and a winter heating condition without solar radiation.
Journal Article

Aerodynamic Sensitivity Analysis of Wheel Shape Factors

2019-04-02
2019-01-0667
Wheels play an important role in determining the aerodynamic drag of passenger vehicles. This is because the contribution of wheels to aerodynamic drag comes from not only the wheels themselves, but also from the interference effect between wheel wakes and the base wake. As far as the authors are aware, there have been no reports about aerodynamic drag sensitivity to wheel shape factors for different vehicle types and different exterior body shapes. The purpose of this study was to clarify CD sensitivity to wheel shape factors for a sedan and an SUV, including different rear fender shapes. Many different wheel configurations were investigated in terms of the CD, base pressure and flow fields in wind tunnel tests. Multiple regression analyses were conducted to clarify CD sensitivity to each wheel shape factor based on the test data. This study revealed high CD sensitivity factors for both the sedan and SUV.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Mechanism Analysis on the Effect of Fuel Properties on Knocking Performance at Boosted Conditions

2019-01-15
2019-01-0035
In recent years, boosted and downsized engines have gained much attention as a promising technology to improve fuel economy; however, knocking is a common issue of such engines that requires attention. To understand the knocking phenomenon under downsized and boosted engine conditions deeply, fuels with different Research Octane Number (RON) and Motor Octane Number (MON) were prepared, and the knocking performances of these fuels were evaluated using a single cylinder engine, operated under a variety of conditions. Experimental results showed that the knocking performance at boosted conditions depend on both RON and MON. While higher RON showed better anti-knocking performance, lower MON showed better anti-knocking performance. Furthermore, the tendency for a reduced MON to be beneficial became stronger at lower engine speeds and higher boost pressures, in agreement with previously published modelling work.
Technical Paper

Improvement of Thermal Efficiency in a Diesel Engine with High-Pressure Split Main Injection

2018-09-10
2018-01-1791
This study aims to utilize high-pressure split-main injection for improving the thermal efficiency of diesel engines. A series of experiments was conducted using a single-cylinder diesel engine under conditions of an engine speed of 2,250 rpm and a gross indicated mean effective pressure of 1.43 MPa. The injection pressure was varied in the range of 160–270 MPa. Split-main injection was applied to reduce cooling loss under the condition of high injection pressure, and the split ratio and the number of injection stages were varied. The dwell of the split main injection was set to near-zero in order to minimize the elongation of the total injection duration. As a result, thermal efficiency was improved owing to the combined increase in injection pressure, advanced injection timing, and split-main injection. According to the analysis of heat balance, a larger amount of the second part of the main injection decreased the cooling loss and increased the exhaust loss.
Technical Paper

A Study on Diesel Spray Characteristics for Small- Quantity Injection

2018-04-03
2018-01-0283
Multi-stage injection with pilot injection and post injection has been widely used for the noise and emissions reduction of diesel engines. Considering many parameters to be decided for optimal combustion, computer simulations such as three dimensional computational fluid dynamics (3D-CFD) and lower dimensional codes should play a role for optimal selection of intervals and quantity ratios. However, the data for the sprays are insufficient for reproducing the actual fuel-air mixture formation process related to pilot and post injection. Hence, there is a need for experimental data with a small-quantity injection. The small-quantity injection is characterized with an injection rate shape similar to a triangle rather than a rectangle. This study is mainly focused on the spray characteristics of diesel sprays in which the entire process is dominated by unsteady injection processes.
X