Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Experimental Investigation of the Aerodynamic Benefits of Truck Platooning: Two- and Four-Vehicle Platoons

2021-04-06
2021-01-0942
A series of scaled wind tunnel tests are conducted to investigate the aerodynamic benefits of heavy vehicle platooning and the availability of cooling air for trailing vehicles on two- and four-vehicle platoons. To measure the aerodynamic drag, scale models are mounted onto a splitter plate by means of a low-friction linear bearing and a load cell located within each model trailer. In addition to drag, pressure measurements are made with a pitot probe positioned at the center of each model radiator grill. Four homogeneous, two-vehicle platoons are tested for spacings up to 300′ and six heterogeneous, four-vehicle platoons are tested with spacings ranging from 30′ to 50′. For the heterogeneous platoons, configurations are tested with one distinct heavy vehicle or medium duty vehicle, as well as with four distinct heavy vehicles. Over spacings of 15′ to 80′, the best performing homogeneous, two-vehicle platoons are comprised of a Supertruck tractor and straight frame trailer.
Technical Paper

Experimental Investigation of the Aerodynamic Benefits of Truck Platooning

2018-04-03
2018-01-0732
Lawrence Livermore National Laboratory (LLNL) has conducted a series of scaled wind tunnel tests to investigate the aerodynamic benefits of heavy vehicle platooning and the availability of cooling air for trailing vehicles on two- and three-vehicle platoons. To measure the aerodynamic drag, scale models are mounted onto a LLNL designed splitter plate by means of a low-friction linear bearing and a load cell located within each model trailer. In addition to drag, pressure measurements are made with a pitot probe positioned at the center of each model radiator grill. Particle Image Velocimetry (PIV) and Infrared Thermography (IRT) measurements are used to map the three-dimensional velocity field and flow structures around the vehicles.
Technical Paper

Computationally-Efficient Heat Convection Model for Electric Machines

2017-03-28
2017-01-0260
This paper presents a computationally-efficient model of heat convection due to air circulation produced by rotor motion in the air gap of an electric machine. The model calculates heat flux at the boundaries of the rotor and stator as a function of the rotor and stator temperatures and rotor speed. It is shown that, under certain assumptions, this mapping has the homogeneity property. This property, among others, is used to pose a structure for the proposed model. The coefficients of the model are then determined by fitting the model to the results of a commercial Computational Fluid Dynamics (CFD) simulation program. The accuracy of the new model is compared to the CFD results, shown an error of less than 0.3% over the studied operating range.
Technical Paper

Motion Cueing Evaluation of Off-Road Heavy Vehicle Handling

2016-09-27
2016-01-8041
Motion cueing algorithms can improve the perceived realism of a driving simulator, however, data on the effects on driver performance and simulator sickness remain scarce. Two novel motion cueing algorithms varying in concept and complexity were developed for a limited maneuvering workspace, hexapod/Stuart type motion platform. The RideCue algorithm uses a simple swing motion concept while OverTilt Track algorithm uses optimal pre-positioning to account for maneuver characteristics for coordinating tilt adjustments. An experiment was conducted on the US Army Tank Automotive Research, Development and Engineering Center (TARDEC) Ride Motion Simulator (RMS) platform comparing the two novel motion cueing algorithms to a pre-existing algorithm and a no-motion condition.
Journal Article

Uncertainty Assessment in Restraint System Optimization for Occupants of Tactical Vehicles

2016-04-05
2016-01-0316
We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
Journal Article

A Reduced-Order Model for Evaluating the Dynamic Response of Multilayer Plates to Impulsive Loads

2016-04-05
2016-01-0307
Assessing the dynamic performance of multilayer plates subjected to impulsive loading is of interest for identifying configurations that either absorb energy or transmit the energy in the transverse directions, thereby mitigating the through-thickness energy propagation. A reduced-order modeling approach is presented in this paper for rapidly evaluating the structural dynamic performance of various multilayer plate designs. The new approach is based on the reverberation matrix method (RMM) with the theory of generalized rays for fast analysis of the structural dynamic characteristics of multilayer plates. In the RMM model, the waves radiated from the dynamic load are reflected and refracted at each interface between layers, and the waves within each layer are transmitted with a phase lag. These two phenomena are represented by the global scattering matrix and the global phase matrix, respectively.
Technical Paper

Simulation and Comparison of Autoignition of Homogeneous Fuel/Air Mixtures and Sprays in Diesel Engines

2016-04-05
2016-01-0311
All previous correlations of the ignition delay (ID) period in diesel combustion show a positive activation energy, which means that shorter ID periods are achieved at higher charge temperatures. This is not the case in the autoignition of most homogeneous hydrocarbons-air mixtures where they experience the NTC (Negative Temperature Coefficient ) regime in the intermediate temperature range, from about 800 K to 1000 K). Here, the autoignition reactions slow down and longer ID periods are experienced at higher temperatures. Accordingly the global activation energy for the autoignition reactions of homogeneous mixtures should vary from positive to negative values.
Technical Paper

Fuel-Optimal Strategies for Vehicle Supported Military Microgrids

2016-04-05
2016-01-0312
Vehicles with power exporting capability are microgrids since they possess electrical power generation, onboard loads, energy storage, and the ability to interconnect. The unique load and silent watch requirements of some military vehicles make them particularly well-suited to augment stationary power grids to increase power resiliency and capability. Connecting multiple vehicles in a peer-to-peer arrangement or to a stationary grid requires scalable power management strategies to accommodate the possibly large numbers of assets. This paper describes a military ground vehicle power management scheme for vehicle-to-grid applications. The particular focus is overall fuel consumption reduction of the mixed asset inventory of military vehicles with diesel generators typically used in small unit outposts.
Technical Paper

Powertrain Analysis and Computational Environment (PACE) for Multi-Physics Simulations Using High Performance Computing

2016-04-05
2016-01-0308
The Powertrain Analysis and Computational Environment (PACE) is a forward-looking powertrain simulation tool that is ready for a High-Performance Computing (HPC) environment. The code, written in C++, is one actor in a comprehensive ground vehicle co-simulation architecture being developed by the CREATE-GV program. PACE provides an advanced behavioral modeling capability for the powertrain subsystem of a conventional or hybrid-electric vehicle that exploits the idea of reusable vehicle modeling that underpins the Autonomie modeling environment developed by the Argonne National Laboratory. PACE permits the user to define a powertrain in Autonomie, which requires a single desktop license for MATLAB/Simulink, and port it to a cluster computer where PACE runs with an open-source BSD-3 license so that it can be distributed to as many nodes as needed.
Journal Article

Fused Dynamics of Unmanned Ground Vehicle Systems

2014-09-30
2014-01-2322
Through inverse dynamics-based modeling and computer simulations for a 6×6 Unmanned Ground Vehicle (UGV) - a 6×6 truck - in stochastic terrain conditions, this paper analytically presents a coupled impact of different driveline system configurations and a suspension design on vehicle dynamics, including vehicle mobility, and energy efficiency. A new approach in this research work involves an estimation of each axle contribution to the level of potential mobility loss/increase and/or energy consumption increase/ reduction. As it is shown, the drive axles of the vehicle interfere with the vehicle's dynamics through the distribution of the wheels' normal reactions and wheel torques. The interference causes the independent system dynamics to become operationally coupled/fused and thus diminishes vehicle mobility and energy efficiency. The analysis is done by the use of new mobility indices and energy efficiency indices which are functionally coupled/fused.
Technical Paper

Long Term Hydrogen Vehicle Fleet Operational Assessment

2011-09-13
2011-01-2299
The U. S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) National Automotive Center (NAC) owns a fleet of ten Hydrogen Hybrid Internal Combustion Engine (H2ICE) vehicles that have been demonstrated in various climates from 2008 through 2010. This included demonstrations in Michigan, Georgia, California and Hawaii. The fleet was consolidated into a single location between July 2009 and April 2010. Between July of 2009 and January of 2011, data collection was completed on the fleet of H2ICE vehicles deployed to Oahu, Hawaii for long-term duration testing. The operation of the H2ICE vehicles in Hawaii utilized standard operation of a non-tactical vehicle at a real-world military installation. The vehicles were fitted with data acquisition equipment to record the operation and performance of the H2ICE vehicles; maintenance and repair data was also recorded for the fleet of vehicles.
Technical Paper

Investigation of a Trailer Underbody Fairing for Heavy Vehicle Aerodynamic Drag Reduction

2008-10-07
2008-01-2601
The drag reduction capability of a trailer underbody fairing is investigated using steady Reynolds-averaged Navier-Stokes simulations of a full-scale heavy vehicle traveling at highway speed within a crosswind. The flow field about the vehicle is modeled for two different fairing designs of varying length that yield reductions in the drag coefficient ranging from 0.013 to 0.042. Analysis of the trailer underbody flow field indicates that the fairings decrease the size of a recirculation zone that exists immediately downstream of the tractor drive wheels by providing a surface to which the separated underbody flow can reattach. A comparison of the pressure coefficients across the surface of the fairings demonstrates that the longer fairings produce greater pressure coefficients, hence resulting in a larger reduction in drag than the shorter fairings. One of the fairings is shown to outperform traditional trailer side skirts, which yield a reduction in the drag coefficient of 0.035.
Technical Paper

DOE's Effort to Reduce Truck Aerodynamic Drag Through Joint Experiments and Computations

2005-11-01
2005-01-3511
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the intelligent design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments related to drag reduction devices, and offer a brief discussion of our future direction.
Technical Paper

Computational Simulation of Tractor-Trailer Gap Flow with Drag-Reducing Aerodynamic Devices

2005-11-01
2005-01-3625
Computational simulations of the Modified Ground Transportation System1 (M-GTS), a 1/14th-scale simplified tractor-trailer geometry, are performed at both laboratory and full-scale Reynolds numbers using the NASA overset grid code OVERFLOW2. Steady Reynolds' Averaged Navier-Stokes (RANS) simulations are conducted to deepen the understanding of tractor-trailer gap flow structure, and to ascertain the time-averaged efficacy of tractor cab extenders and trailer-face splitter plates in reducing aerodynamic drag in typical crosswinds. Results of lab-scale simulations compare favorably to body force and particle image velocimetry (PIV) data obtained from University of Southern California (USC) experiments for two tractor-trailer gap lengths. Full-scale simulations highlight model geometry limitations and allude to the use of splitter plates in place of, or in conjunction with, tractor cab extenders.
Technical Paper

Aerodynamic Drag of Heavy Vehicles (Class 7-8): Simulation and Benchmarking

2000-06-19
2000-01-2209
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. Experimental validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California (USC). Companion computer simulations are being performed by Sandia National Laboratories (SNL), Lawrence Livermore National Laboratory (LLNL), and California Institute of Technology (Caltech) using state-of-the-art techniques.
Technical Paper

Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)

1999-04-26
1999-01-2238
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of- the-art techniques, with the intention of implementing more complex methods in the future.
X