Refine Your Search

Topic

Search Results

Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
Technical Paper

Influence of the Wall Temperature and Combustion Chamber Geometry on the Performance and Emissions of a Mini HCCI Engine Fueled with Diethyl Ether

2008-04-14
2008-01-0008
Nowadays for small-scale power generation there are electrochemical batteries and mini engines. Many efforts have been done for improving the power density of the batteries but unfortunately the value of 1 MJ/kg seems to be asymptotic. If the energy source is an organic fuel which has an energy density of around 29 MJ/kg with a minimum overall efficiency of only 3.5%, this device would surpass the batteries. This paper is the fifth of a series of publications aimed to study the HCCI combustion process in the milli domain at high engine speed in order to design and develop VIMPA, Vibrating Microengine for Low Power Generation and Microsystems Actuation. Previous studies ranged from general characterization of the HCCI combustion process by using metal and optical engines, to more specific topics for instance the influence of the boundary layer and quenching distance on the quality of the combustion.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Technical Paper

The Effect of Displacement on Air-Diluted Multi-Cylinder HCCI Engine Performance

2006-04-03
2006-01-0205
The main benefit of HCCI engines compared to SI engines is improved fuel economy. The drawback is the diluted combustion with a substantially smaller operating range if not some kind of supercharging is used. The reasons for the higher brake efficiency in HCCI engines can be summarized in lower pumping losses and higher thermodynamic efficiency, due to higher compression ratio and higher ratio of specific heats if air is used as dilution. In the low load operating range, where HCCI today is mainly used, other parameters as friction losses, and cooling losses have a large impact on the achieved brake efficiency. To initiate the auto ignition of the in-cylinder charge a certain temperature and pressure have to be reached for a specific fuel. In an engine with high in-cylinder cooling losses the initial charge temperature before compression has to be higher than on an engine with less heat transfer.
Technical Paper

Modelling Diesel Engine Combustion and NOx Formation for Model Based Control and Simulation of Engine and Exhaust Aftertreatment Systems

2006-04-03
2006-01-0687
Emissions standards are becoming increasingly harder to reach without the use of exhaust aftertreatment systems such as Selective Catalytic Reduction and particulate filters. In order to make efficient use of these systems it is important to have accurate models of engine-out emissions. Such models are also useful for optimizing and controlling next-generation engines without aftertreatment using for example exhaust gas recirculation (EGR). Engines are getting more advanced using systems such as common rail fuel injection, variable geometry turbochargers (VGT) and EGR. With these new technologies and active control of the injection timing, more sophisticated models than simple stationary emission maps must be used to get adequate results. This paper is focused on the calculation of engine-out NOx and engine parameters such as cylinder pressure, temperature and gas flows.
Technical Paper

Combustion Chamber Wall Temperature Measurement and Modeling During Transient HCCI Operation

2005-10-24
2005-01-3731
In this paper the combustion chamber wall temperature was measured by the use of thermographic phosphor. The temperature was monitored over a large time window covering a load transient. Wall temperature measurement provide helpful information in all engines. This temperature is for example needed when calculating heat losses to the walls. Most important is however the effect of the wall temperature on combustion. The walls can not heat up instantaneously and the slowly increasing wall temperature following a load transient will affect the combustion events sucseeding the transient. The HCCI combustion process is, due to its dependence on chemical kinetics more sensitive to wall temperature than Otto or Diesel engines. In depth knowledge about transient wall temperature could increase the understanding of transient HCCI control. A “black box” state space model was derived which is useful when predicting transient wall temperature.
Technical Paper

Investigation of Boundary Layer Behaviour in HCCI Combustion using Chemiluminescence Imaging

2005-10-24
2005-01-3729
A five-cylinder diesel engine, converted to a single cylinder operated optical engine is run in Homogeneous Charge Compression Ignition (HCCI) mode. A blend of iso-octane and n-heptane is used as fuel. An experimental study of the horizontal boundary layer between the main combustion and the non-reacting surface of the combustion chamber is conducted as a function of speed, load, swirl and injection strategy. The combustion behaviour is monitored by chemiluminescence measurements. For all cases an interval from -10 to 16 crank angles after top dead center (CAD ATDC) in steps of one CAD are studied. One image-intensified camera observes the boundary layer up close from the side through a quartz cylinder liner while a second camera has a more global view from below to see more large scale structure of the combustion. The averaged chemiluminescence intensity from the HCCI combustion is seen to scale well with the rate of heat release.
Technical Paper

High-Speed LIF Imaging for Cycle-Resolved Formaldehyde Visualization in HCCI Combustion

2005-04-11
2005-01-0641
High-speed laser diagnostics was utilized for single-cycle resolved studies of the formaldehyde distribution in the combustion chamber of an HCCI engine. A multi-YAG laser system consisting of four individual Q-switched, flash lamp-pumped Nd:YAG lasers has previously been developed in order to obtain laser pulses at 355 nm suitable for performing LIF measurements of the formaldehyde molecule. Bursts of up to eight pulses with very short time separation can be produced, allowing capturing of LIF image series with high temporal resolution. The system was used together with a high-speed framing camera employing eight intensified CCD modules, with a frame-rate matching the laser pulse repetition rate. The diagnostic system was used to study the combustion in a truck-size HCCI engine, running at 1200 rpm using n-heptane as fuel. By using laser pulses with time separations as short as 70 μs, cycle-resolved image sequences of the formaldehyde distribution were obtained.
Technical Paper

Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst

2005-04-11
2005-01-0250
Exhaust Emissions from lean burn natural gas engines may not always be as low as the potential permits, especially engines with open loop lambda control. These engines can produce much higher emissions than a comparable diesel engine without exhaust gas after treatment. Even if the engine has closed loop lambda control, emissions are often unacceptably high for future emission regulations. A three way catalyst is, today, the best way to reduce hazardous emissions. The drawback is that the engine has to operate with a stoichiometric mixture and this leads to; higher heat losses, higher pumping work at low to medium loads, higher thermal stress on the engine and higher knock tendency (requiring lower compression ratio, and thus lower brake efficiency). One way to reduce these drawbacks is to dilute the stoichiometric mixture with EGR. This paper compares lean burn operation with operation at stoichiometric conditions diluted with EGR, and using a three way catalyst.
Technical Paper

Boosting for High Load HCCI

2004-03-08
2004-01-0940
Homogeneous Charge Compression Ignition (HCCI) holds great promises for good fuel economy and low emissions of NOX and soot. The concept of HCCI is premixed combustion of a highly diluted mixture. The dilution limits the combustion temperature and thus prevents extensive NOX production. Load is controlled by altering the quality of the charge, rather than the quantity. No throttling together with a high compression ratio to facilitate auto ignition and lean mixtures results in good brake thermal efficiency. However, HCCI also presents challenges like how to control the combustion and how to achieve an acceptable load range. This work is focused on solutions to the latter problem. The high dilution required to avoid NOX production limits the mass of fuel relative to the mass of air or EGR. For a given size of the engine the only way to recover the loss of power due to dilution is to force more mass through the engine.
Technical Paper

The Effect of Intake Temperature on HCCI Operation Using Negative Valve Overlap

2004-03-08
2004-01-0944
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. This implementation requires only minor modifications of the standard SI engine and allows SI operation outside the operating range of HCCI. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. A heat exchanger is utilized to heat or cool the intake air, not as a means of combustion control but in order to simulate realistic variations in ambient temperature. The combustion is monitored in real time using cylinder pressure sensors. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. However, for a practical application the intake temperature will vary both geographically and from time to time.
Technical Paper

Prediction Tool for the Ion Current in SI Combustion

2003-10-27
2003-01-3136
In this work, constant volume combustion is studied using a zero-dimensional FORTRAN code, which is a wide-ranging chemical kinetic simulation that allows a closed system of gases to be described on the basis of a set of initial conditions. The model provides an engine- or reactor-like environment in which the engine simulations allow for a variable system volume and heat transfer both to and from the system. The combustion chamber is divided into two zones as burned and unburned ones, which are separated by an assumed thin flame front in the combustion model used for this work. Equilibrium assumptions have been adopted for the modeling of the thermal ionization, where Saha's equation was derived for singly ionized molecules. The investigation is focused on the thermal ionization of NO as well as for other species. The outputs generated by the model are temperature profiles, species concentration profiles, ionization degree and an electron density for each zone.
Technical Paper

The Effect of Cooled EGR on Emissions and Performance of a Turbocharged HCCI Engine

2003-03-03
2003-01-0743
This paper discusses the effects of cooled EGR on a turbo charged multi cylinder HCCI engine. A six cylinder, 12 liter, Scania D12 truck engine is modified for HCCI operation. It is fitted with port fuel injection of ethanol and n-heptane and cylinder pressure sensors for closed loop combustion control. The effects of EGR are studied in different operating regimes of the engine. During idle, low speed and no load, the focus is on the effects on combustion efficiency, emissions of unburned hydrocarbons and CO. At intermediate load, run without turbocharging to achieve a well defined experiment, combustion efficiency and emissions from incomplete combustion are still of interest. However the effect on NOx and the thermodynamic effect on thermal efficiency, from a different gas composition, are studied as well. At high load and boost pressure the main focus is NOx emissions and the ability to run high mean effective pressure without exceeding the physical constraints of the engine.
Technical Paper

The Potential of Using the Ion-Current Signal for Optimizing Engine Stability - Comparisons of Lean and EGR (Stoichiometric) Operation

2003-03-03
2003-01-0717
Ion current measurements can give information useful for controlling the combustion stability in a multi-cylinder engine. Operation near the dilution limit (air or EGR) can be achieved and it can be optimized individually for the cylinders, resulting in a system with better engine stability for highly diluted mixtures. This method will also compensate for engine wear, e.g. changes in volumetric efficiency and fuel injector characteristics. Especially in a port injected engine, changes in fuel injector characteristics can lead to increased emissions and deteriorated engine performance when operating with a closed-loop lambda control system. One problem using the ion-current signal to control engine stability near the lean limit is the weak signal resulting in low signal to noise ratio. Measurements presented in this paper were made on a turbocharged 9.6 liter six cylinder natural gas engine with port injection.
Technical Paper

Concurrent Quantitative Laser-Induced Incandescence and SMPS Measurements of EGR Effects on Particulate Emissions from a TDI Diesel Engine

2002-10-21
2002-01-2715
A comparison of scanning mobility particle sizer (SMPS) and laser-induced incandescence (LII) measurements of diesel particulate matter (PM) was performed. The results reveal the significance of the aggregate nature of diesel PM on interpretation of size and volume fraction measurements obtained with an SMPS, and the accuracy of primary particle size measurements by LII. Volume fraction calculations based on the mobility diameter measured by the SMPS substantially over-predict the space-filling volume fraction of the PM. Correction algorithms for the SMPS measurements, to account for the fractal nature of the aggregate morphology, result in a substantial reduction in the reported volume. The behavior of the particulate volume fraction, mean and standard deviation of the mobility diameter, and primary particle size are studied as a function of the EGR for a range of steady-state engine speeds and loads for a turbocharged direct-injection diesel engine.
Technical Paper

Hydrogen Addition For Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers

2002-10-21
2002-01-2686
One way to extend the lean burn limit of a natural gas engine is by addition of hydrogen to the primary fuel. This paper presents measurements made on a one cylinder 1.6 liter natural gas engine. Two combustion chambers, one slow and one fast burning, were tested with various amounts of hydrogen (0, 5, 10 and 15 %-vol) added to natural gas. Three operating points were investigated for each combustion chamber and each hydrogen content level; idle, part load (5 bar IMEP) and 13 bar IMEP (simulated turbocharging). Air/fuel ratio was varied between stoichiometric and the lean limit. For each operating point, a range of ignition timings were tested to find maximum brake torque (MBT) and/or knock. Heat-release rate calculations were made in order to assess the influence of hydrogen addition on burn rate. Addition of hydrogen showed an increase in burn rate for both combustion chambers, resulting in more stable combustion close to the lean limit.
Technical Paper

Early Swedish Hot-Bulb Engines - Efficiency and Performance Compared to Contemporary Gasoline and Diesel Engines

2002-03-04
2002-01-0115
“Hot Bulb engines” was the popular name of the early direct injected 2-stroke oil engine, invented and patented by Carl W. Weiss 1897. This paper covers engines of this design, built under license in Sweden by various manufacturers. The continuous development is demonstrated through examples of different combustion chamber designs. The material is based on official engine performance evaluations on stationary engines and farm tractors from 1899 to 1995 made by the National Machinery Testing Institute in Sweden (SMP). Hot-bulb, diesel and spark ignited engines are compared regarding efficiency, brake mean effective pressure and specific power (power per displaced volume). The evaluated hot-bulb engines had a fairly good efficiency, well matching the contemporary diesel engines. At low mean effective pressures, the efficiency of the hot-bulb engines was even better than that of subsequent diesel engines.
Technical Paper

Heat Release in the End-Gas Prior to Knock in Lean, Rich and Stoichiometric Mixtures With and Without EGR

2002-03-04
2002-01-0239
SI Engine knock is caused by autoignition in the unburnt part of the mixture (end-gas) ahead of the propagating flame. Autoignition of the end-gas occurs when the temperature and pressure exceeds a critical limit when comparatively slow reactions-releasing moderate amounts of heat-transform into ignition and rapid heat release. In this paper the difference in the heat released in the end-gas-by low temperature chemistry-between lean, rich, stochiometric, and stoichiometric mixtures diluted with cooled EGR was examined by measuring the temperature in the end-gas with Dual Broadband Rotational CARS. The measured temperature history was compared with an isentropic temperature calculated from the cylinder pressure trace. The experimentally obtained values for knock onset were compared with results from a two-zone thermodynamic model including detailed chemistry modeling of the end-gas reactions.
Technical Paper

Qualitative Laser-Induced Incandescence Measurements of Particulate Emissions During Transient Operation of a TDI Diesel Engine

2001-09-24
2001-01-3574
Laser-induced incandescence (LII) is a sensitive diagnostic technique capable of making exhaust particulate-matter measurements during transient operating conditions. This paper presents measurements of LII signals obtained from the exhaust gas of a 1.9-L TDI diesel engine. A scanning mobility particle sizer (SMPS) is used in fixed-size mode to obtain simultaneous number concentration measurements in real-time. The transient studies presented include a cranking-start/idle/shutdown sequence, on/off cycling of EGR, and rapid load changes. The results show superior temporal response of LII compared to the SMPS. Additional advantages of LII are that exhaust dilution and cooling are not required, and that the signal amplitude is directly proportional to the carbon volume fraction and its temporal decay is related to the primary particle size.
X