Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

Optical Diagnostic Study on Improving Performance and Emission in Heavy-Duty Diesel Engines Using a Wave-Shaped Piston Bowl Geometry and Post Injection Strategies

2023-08-28
2023-24-0048
This study explores the potential benefits of combining a wave-shaped piston geometry with post injection strategy in diesel engines. The wave piston design features evenly spaced protrusions around the piston bowl, which improve fuel-air mixing and combustion efficiency. The 'waves' direct the flames towards the bowl center, recirculating them and utilizing the momentum in the flame jets for more complete combustion. Post injection strategy, which involves a short injection after the main injection, is commonly used to reduce emissions and improve fuel efficiency. By combining post injections with the wave piston design, additional fuel injection can increase the momentum utilized by the flame jets, potentially further improving combustion efficiency. To understand the effects and potential of the wave piston design with post injection strategy, a single-cylinder heavy-duty compression-ignition optical engine with a quartz piston is used.
Technical Paper

The Influence of Ignition Control Parameters on Combustion Stability and Spark plug Wear in a Large Bore Gas Engine

2023-04-11
2023-01-0257
The paper presents novel studies on the impact of different ignition control parameters on combustion stability and spark plug wear. First, experimental results from a 32.4-liter biogas fueled large bore single cylinder spark ignition engine are discussed. Two different ignition systems were considered in the experiment: a DC inductive and an AC capacitive. The spark plugs used in the experiment were of dual-iridium standard J-gap design of different electrode gaps. Test results show the importance of different degrees of freedom to control a spark. A robust ignition is found to be achieved by using a very short spark duration, which in turn reduces total energy discharge at the gap. Further observations reveal that once a stable and self-propagating flame kernel is developed, it becomes independent of the spark energy further added to the gap. Finally, results from the spark plug wear tests using a pressurized rig chamber are discussed.
Technical Paper

Optical Characterization of Methanol Sprays and Mixture Formation in a Compression-Ignition Heavy-Duty Engine

2020-09-15
2020-01-2109
Methanol is not a fuel typically used in compression ignition engines due to the high resistance to auto-ignition. However, conventional diesel combustion and PPC offer high engine efficiency along with low HC and CO emissions, albeit with the trade-off of increased NOx and PM emissions. This trade-off balance is mitigated in the case of methanol and other alcohol fuels, as they bring oxygen in the combustion chamber. Thus methanol compression ignition holds the potential for a clean and effective alternative fuel proposition. Most existing research on methanol is on SI engines and very little exists in the literature regarding methanol auto-ignition engine concepts. In this study, the spray characteristics of methanol inside the optically accessible cylinder of a DI-HD engine are investigated. The liquid penetration length at various injection timings is documented, ranging from typical PPC range down to conventional diesel combustion.
Technical Paper

Effects of In-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine

2019-09-09
2019-24-0009
In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of diesel combustion, especially when soot and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution.
Technical Paper

Numerical Investigation of Methanol Ignition Sequence in an Optical PPC Engine with Multiple Injection Strategies

2019-09-09
2019-24-0007
Methanol is a genuine candidate on the alternative fuel market for internal combustion engines, especially within the heavy-duty transportation sector. Partially premixed combustion (PPC) engine concept, known for its high efficiency and low emission rates, can be promoted further with methanol fuel due to its unique thermo-physical properties. The low stoichiometric air to fuel ratio allows to utilize late injection timings, which reduces the wall-wetting effects, and thus can lead to less unburned hydrocarbons. Moreover, combustion of methanol as an alcohol fuel, is free from soot emissions, which allows to extend the operation range of the engine. However, due to the high latent heat of vaporization, the ignition event requires a high inlet temperature to achieve ignition event. In this paper LES simulations together with experimental measurements on an heavy-duty optical engine are used to study methanol PPC engine.
Technical Paper

Effect of Injection Timing on the Ignition and Mode of Combustion in a HD PPC Engine Running Low Load

2019-04-02
2019-01-0211
This work aims to study the effect of fuel inhomogeneity on the ignition process and subsequent combustion in a compression ignition Partially Premixed Combustion (PPC) engine using a primary reference fuel (PRF) in low load conditions. Five cases with injection timings ranging from the start of injection (SOI) at -70 crank angle degrees (CAD) to -17 CAD have been studied numerically and experimentally in a heavy duty (HD) piston bowl geometry. Intake temperature is adjusted to keep the combustion phasing constant. Three dimensional numerical simulations are performed in a closed cycle sector domain using the Reynolds Averaged Navier-Stokes (RANS) formulation with k-ϵ turbulence closure and direct coupling of finite rate chemistry. The results are compared with engine experiments. The predicted trends in required intake temperature and auto-ignition location for a constant combustion phasing are consistent with experiments.
Technical Paper

A Numerical Study on the Sensitivity of Soot and NOx Formation to the Operating Conditions in Heavy Duty Engines

2018-04-03
2018-01-0177
In this paper, computation fluid dynamics (CFD) simulations are employed to describe the effect of flow parameters on the formation of soot and NOx in a heavy duty engine under low load and high load. The complexity of diesel combustion, specially when soot, NOx and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Multiple Representative Interactive Flamelets (MRIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. A phenomenological model for soot formation, including soot nucleation, coagulation and oxidation with O2 and OH is incorporated into the flamelet combustion model. Different strategies for modelling NOx are chosen to take into account the longer time scale for NOx formation. The numerical results are compared with experimental data to show the validity of the model for the cases under study.
Technical Paper

Lift-Off Lengths in an Optical Heavy-Duty Engine Operated at High Load with Low and High Octane Number Fuels

2018-04-03
2018-01-0245
The influence of the ignition quality of diesel-and gasoline-like fuels on the lift-off length of the jet were investigated in an optical heavy duty engine. The engine was operated at a load of 22 bar IMEPg and 1200 rpm. A production type injector with standard holes were used. The lift-off length was recorded with high speed video Different injection pressures and inlet temperatures were used to affect conditions that consequently affect the lift-off length. No matter which fuel used nor injection pressure or inlet temperature, all lift-off lengths showed equal or close to equal lift-off length when stabilized. The higher octane fuel had a longer ignition delay and therefore the fuel penetrate the combustion chamber before auto ignition. This gave a longer lift-off length at the initial stage of combustion before reaching the same stabilized lift-off length. These results indicate that the hot combustion gases are a dominant factor to the lift-off length.
Technical Paper

A Droplet Size Investigation and Comparison Using a Novel Biomimetic Flash-Boiling Injector for AdBlue Injections

2016-10-17
2016-01-2211
Increased research is being driven by the automotive industry facing challenges, requiring to comply with both current and future emissions legislation, and to lower the fuel consumption. The reason for this legislation is to restrict the harmful pollution which every year causes 3.3 million premature deaths worldwide [1]. One factor that causes this pollution is NOx emissions. NOx emission legislation has been reduced from 8 g/kWh (Euro I) down to 0.4 g/kWh (Euro VI) and recently new legislation for ammonia slip which increase the challenge of exhaust aftertreatment with a SCR system. In order to achieve a good NOx conversion together with a low slip of ammonia, small droplets of Urea solution needs to be injected which can be rapidly evaporated and mixed into the flow of exhaust gases.
Technical Paper

NOx-Conversion and Activation Temperature of a SCR-Catalyst Whilst Using a Novel Biomimetic Flash-Boiling AdBlue Injector on a LD Engine

2016-10-17
2016-01-2212
Yearly 3.3 million premature deaths occur worldwide due to air pollution and NOx pollution counts for nearly one seventh of those [1]. This makes exhaust after-treatment a very important research and has caused the permitted emission levels for NOx to decrease to very low levels, for EURO 6 only 0.4 g/kWh. Recently new legislation on ammonia slip with a limit of 10 ppm NH3 has been added [2], which makes the SCR-technology more challenging. This technology injects small droplets of an aqueous Urea solution into the stream of exhaust gases and through a catalytic reaction within the SCR-catalyst, NOx is converted into Nitrogen and Water. To enable the catalytic reaction the water content in the Urea solution needs to be evaporated and the ammonia molecules need to have sufficient time to mix with the gases prior to the catalyst.
Journal Article

Simultaneous PLIF Imaging of OH and PLII Imaging of Soot for Studying the Late-Cycle Soot Oxidation in an Optical Heavy-Duty Diesel Engine

2016-04-05
2016-01-0723
The effects of injection pressure and swirl ratio on the in-cylinder soot oxidation are studied using simultaneous PLIF imaging of OH and LII imaging of soot in an optical diesel engine. Images are acquired after the end of injection in the recirculation zone between two adjacent diesel jets. Scalars are extracted from the images and compared with trends in engine-out soot emissions. The soot emissions decrease monotonically with increasing injection pressure but show a non-linear dependence on swirl ratio. The total amount of OH in the images is negatively correlated with the soot emissions, as is the spatial proximity between the OH and soot regions. This indicates that OH is an important soot oxidizer and that it needs to be located close to the soot to perform this function. The total amount of soot in the images shows no apparent correlation with the soot emissions, indicating that the amount of soot formed is a poor predictor of the emission trends.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Technical Paper

A Correlation Analysis of the Roles of Soot Formation and Oxidation in a Heavy-Duty Diesel Engine

2013-10-14
2013-01-2535
Emissions and in-cylinder pressure traces are used to compare the relative importance of soot formation and soot oxidation in a heavy-duty diesel engine. The equivalence ratio at the lift-off length is estimated with an empirical correlation and an idealized model of diesel spray. No correlation is found between the equivalence ratio at lift-off and the soot emissions. This confirms that trends in soot emissions cannot be directly understood by the soot formation process. The coupling between soot emission levels and late heat release after end of injection is also studied. A regression model describing soot emissions as function of global engine parameters influencing soot oxidation is proposed. Overall, the results of this analysis indicate that soot emissions can be understood in terms of the efficiency of the oxidation process.
Journal Article

Air-Entrainment in Wall-Jets Using SLIPI in a Heavy-Duty Diesel Engine

2012-09-10
2012-01-1718
Mixing in wall-jets was investigated in an optical heavy-duty diesel engine with several injector configurations and injection pressures. Laser-induced fluorescence (LIF) was employed in non-reacting conditions in order to quantitatively measure local equivalence ratios in colliding wall-jets. A novel laser diagnostic technique, Structured Laser Illumination Planar Imaging (SLIPI), was successfully implemented in an optical engine and permits to differentiate LIF signal from multiply scattered light. It was used to quantitatively measure local equivalence ratio in colliding wall-jets under non-reacting conditions. Mixing phenomena in wall-jets were analyzed by comparing the equivalence ratio in the free part of the jet with that in the recirculation zone where two wall-jets collide. These results were then compared to φ predictions for free-jets. It was found that under the conditions tested, increased injection pressure did not increase mixing in the wall-jets.
Journal Article

Diesel Spray Ignition Detection and Spatial/Temporal Correction

2012-04-16
2012-01-1239
Methods for detection of the spatial position and timing of diesel ignition with improved accuracy are demonstrated in an optically accessible constant-volume chamber at engine-like pressure and temperature conditions. High-speed pressure measurement using multiple transducers, followed by triangulation correction for the speed of the pressure wave, permits identification of the autoignition spatial location and timing. Simultaneously, high-speed Schlieren and broadband chemiluminescence imaging provides validation of the pressure-based triangulation technique. The combined optical imaging and corrected pressure measurement techniques offer improved understanding of diesel ignition phenomenon. Schlieren imaging shows the onset of low-temperature (first-stage) heat release prior to high-temperature (second-stage) ignition. High-temperature ignition is marked by more rapid pressure rise and broadband chemiluminescence.
Journal Article

The Influence of Fuel Properties on Transient Liquid-Phase Spray Geometry and on Cl-Combustion Characteristics

2009-11-02
2009-01-2774
A transparent HSDI CI engine was used together with a high speed camera to analyze the liquid phase spray geometry of the fuel types: Swedish environmental class 1 Diesel fuel (MK1), Soy Methyl Ester (B100), n-Heptane (PRF0) and a gas-to-liquid derivate (GTL) with a distillation range similar to B100. The study of the transient liquid-phase spray propagation was performed at gas temperatures and pressures typical for start of injection conditions of a conventional HSDI CI engine. Inert gas was supplied to the transparent engine in order to avoid self-ignition at these cylinder gas conditions. Observed differences in liquid phase spray geometry were correlated to relevant fuel properties. An empirical relation was derived for predicting liquid spray cone angle and length prior to ignition.
Technical Paper

Influence of Spray-Target and Squish Height on Sources of CO and UHC in a HSDI Diesel Engine During PPCI Low-Temperature Combustion

2009-11-02
2009-01-2810
Laser induced fluorescence (LIF) imaging during the expansion stroke, exhaust gas emissions, and cylinder pressure measurements were used to investigate the influence on combustion and CO/UHC emissions of variations in squish height and fuel spray targeting on the piston. The engine was operated in a highly dilute, partially premixed, low-temperature combustion mode. A small squish height and spray targeting low on the piston gave the lowest exhaust emissions and most rapid heat release. The LIF data show that both the near-nozzle region and the squish volume are important sources of UHC emissions, while CO is dominated by the squish region and is more abundant near the piston top. Emissions from the squish volume originate primarily from overly lean mixture. At the 3 bar load investigated, CO and UHC levels in mixture leaving the bowl and ring-land crevice are low.
Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Technical Paper

Analysis of Smokeless Spray Combustion in a Heavy-Duty Diesel Engine by Combined Simultaneous Optical Diagnostics

2009-04-20
2009-01-1353
A heavy duty diesel engine operating case producing no engine-out smoke was studied using combined simultaneous optical diagnostics. The case was close to a typical low load modern diesel operating point without EGR. Parallels were drawn to the conceptual model by Dec and results from high-pressure combustion vessels. Optical results revealed that no soot was present in the upstream part of the jet cross-section. Soot was only observed in the recirculation zones close to the bowl perimeter. This indicated very slow soot formation and was explained by a significantly higher air entrainment rate than in Dec's study. The local fuel-air equivalence ratio, Φ, at the lift-off length was estimated to be 40% of the value in Dec's study. The lower Φ in the jet produced a different Φ -T-history, explaining the soot results. The increased air entrainment rate was mainly due to smaller nozzle holes and increased TDC density.
Technical Paper

Investigation on Differences in Engine Efficiency with Regard to Fuel Volatility and Engine Load

2008-10-06
2008-01-2385
An HSDI Diesel engine was fuelled with standard Swedish environmental class 1 Diesel fuel (MK1), Soy methyl ester (B100) and n-heptane (PRF0) to study the effects of both operating conditions and fuel properties on engine performance, resulting emissions and spray characteristics. All experiments were based on single injection diesel combustion. A load sweep was carried out between 2 and 10 bar IMEPg. For B100, a loss in combustion efficiency as well as ITE was observed at low load conditions. Observed differences in exhaust emissions were related to differences in mixing properties and spray characteristics. For B100, the emission results differed strongest at low load conditions but converged to MK1-like results with increasing load and increasing intake pressures. For these cases, spray geometry calculations indicated a longer spray tip penetration length. For low-density fuels (PRF0) the spray spreading angle was higher.
X