Refine Your Search

Topic

Author

Search Results

Technical Paper

Investigation on Fuel Economy Benefits by Lubrication System Optimization for a High Performance 2.2 L Diesel Engine

2024-04-09
2024-01-2415
Lubrication systems play a major role not only in the durability of modern IC engines but also in performance and emissions. The design of the lubrication system influences the brake thermal efficiency of the engine. Also, efficient lubrication reduces the engine's CO2 emissions significantly. Thus, it is critical for an IC engine to have a well-designed lubrication system that performs efficiently at all engine operating conditions. The conventional lubrication system has a fixed-displacement oil pump that can cater to a particular speed range. However, a fully variable displacement oil pump can cater to a wide range of speeds, thereby enhancing the engine fuel efficiency as the oil flow rates can be controlled precisely based on the engine speed and load conditions. This paper primarily discusses the optimization of a lubrication system with a Variable Displacement Oil Pump (VDOP) and a map-controlled Piston Cooling Jet (PCJ) for a passenger car diesel engine.
Technical Paper

Optimized Soot Monitoring by Ammonia Injection in a sDPF System for BS6.2 Application

2024-01-16
2024-26-0141
The BS6 norms (phase 1) were implemented in India from April 1, 2020 and replaced the previous BS4 norms. Phase 2 of the BS6 norms, which came into effect on April 1, 2023. In accordance with the regulation requirement, effective performance of after treatment systems like DPF and SCR demands critical hardware implementation and robust monitoring strategies in the extended operating zone. Effective OBD monitoring of DPF, which is common to all BSVI certified vehicles, such that the defined strategy detects the presence or absence of the component is imperative. A robust monitoring strategy is developed to detect the presence of the DPF in the real world incorporating the worst possible driving conditions including idling, and irrespective of other environmental factors subject to a location or terrain. The differential pressure sensor across the DPF is used to study the actual pressure drop across the DPF.
Technical Paper

Soot Sensor Elimination with DPF Substrate Failure Monitoring

2024-01-16
2024-26-0153
The automobile industry is going through one of the most challenging times, with increased competition in the market which is enforcing competitive prices of the products along with meeting the stringent emission norms. One such requirement for BS6 phase 2 emission norms is monitoring for partial failure of the component if the tailpipe emissions are higher than the OBD limits. Recently PM (soot) sensor is employed for partial failure monitoring of DPF in diesel passenger cars.. PM sensor detects soot leakage in case of DPF substrate failure. There is a cost factor along with extensive calibration efforts which are needed to ensure sensor works flawlessly. This paper deals with the development of an algorithm with which robust detection of DPF substrate failure is achieved without addition of any sensor in the aftertreatment system.
Technical Paper

DeNOx Strategy Adaptation and Optimization in Naturally Aspirated Engine LCV Application for BSVI OBD-II Norms

2024-01-16
2024-26-0160
Powertrain complexity rapidly increasing to meet fast moving regulation requirements. The BS6 Phase-1 regulation norms were implemented in India from April 1, 2020 and replaced the previous BS4 norms. Phase-2 of the BS6 regulation norms were came into effect on April 1, 2023. To meet this stringent regulation requirement, need effective performance of after treatment systems like DOC, DPF and SCR demands critical hardware selection and implementation. In Indian market, LCV application is cost sensitive and highly competitive where operational cost is most critical factor. Naturally aspirated engine has less operating cost, which is the best for LCV applications, but is has its own challenges to meet BS6 norms like higher engine out NOx, dynamic temperature profiles etc. A robust DeNOx emissions strategy is developed in naturally aspirated engine LCV application to meet cycle emissions, real drive emissions and OBD requirements.
Technical Paper

Integration of Seat-Belt Web-Guide Functionality in Trim Part

2024-01-16
2024-26-0018
Restraint systems in automotives are inevitable for the safety of passengers. Seat belts are one such restraint system in automotives that prevent drivers and passengers from being injured during a crash by restraining them back. Seatbelt on automotives has interface with Body-in-white (henceforth called as BIW) and Trim parts in-order to serve its purpose at vehicle level. One such interface part of seat belt is the web guide, which assists and ensures the nylon web’s smooth motion at different seat track positions. Web-guides on automotives ensure the flawless motion of seat belt web at pillar trim areas. In this paper, we are discussing alternate ways of assisting the seat belt web without the web-guide as a separate part. In-order to assist and ensure the motion of nylon web in its trajectory, we have extended the flange of the pillar trim involved.
Technical Paper

Effect of Temperature on Synchronizer Ring Performance

2023-11-10
2023-28-0054
The brass synchronizers are not resistant to abusive conditions of gearbox operations, but they are very durable and cheap when used on their favorable material property working limit. The main failure which can occur in the gearbox due to the synchronizer is crash noise. During gear shifting the gear crash will create high discomfort for the driver and must apply high force to change the gears. The main factors which contribute to the crash phenomenon are the insufficient coefficient of friction, high drag in the system, and high wear rate of the synchronizer rings before the intended design life of the synchronizer. The brass synchronizers were tested on the SSP-180, ZF synchronizer test rig to know the effect of the synchronizer performance parameters like the coefficient of friction, sleeve force, slipping time as well as durability parameters like wear rate when the operating temperature of the oil is changed.
Technical Paper

Numerical Investigation on the Design and Development of Automotive Exhaust Muffler –A Case Study

2023-11-10
2023-28-0085
Attaining better acoustic performance and back-pressure is a continuous research area in the design and development of passenger vehicle exhaust system. Design parameters such as tail pipe, resonator, internal pipes and baffles, muffler dimensions, number of flow reversals, perforated holes size and number etc. govern the muffler design. However, the analysis on the flow directivity from tail pipe is limited. A case study is demonstrated in this work on the development of automotive muffler with due consideration of back pressure and flow directivity from tail pipe. CFD methodology is engaged to evaluate the back pressure of different muffler configurations. The experimental and numerical results of backpressure have been validated. The numerical results are in close agreement with experimental results.
Technical Paper

Effect of Rolling Direction and Gauge Length on the Mechanical Properties of S460MC High Strength Low Alloy Steel

2023-05-25
2023-28-1329
Tensile Testing is one of the most used and highly reliable method of mechanical testing to evaluate the tensile properties of the material. However, there is a large scope for discussing the behavior of the metals based on the direction of rolling and the tensile specimen size used for testing. This paper discusses the variation observed in the tensile values along the direction of rolling and traverse to the direction of rolling for S460MC. It also evaluates the variation observed in the values based on the various gauge lengths (GL) commonly used in testing as per international standards (80mm, 50mm and 25mm GL). It is observed that perpendicular to the direction of rolling, the Yield and Tensile strength of the material increase marginally while the Elongation percentage (%E) decreases by a small margin irrespective of the gauge length taken into consideration.
Technical Paper

Effect of Varying Levels of Work Hardening and Bake Hardening on the Mechanical Properties of Dual Phase Steels

2023-05-25
2023-28-1331
In most cases, the properties of a metal are evaluated in their as rolled condition, prior to any work hardening or bake hardening. But in the Automotive World, these steels get work hardened during the forming process and bake hardened in the paint shop. The goal of this paper is to evaluate the variations in the performance of Dual Phase (DP) steels and understand the most optimized method of testing and property generation. This method can then be used to extrapolate to real automotive components. Dual Phase Steels or DP Steels contain a mixture of Ferrite & Martensite from which they derive their name. They are a part of the advanced high strength and ultra-high strength steels steel family according to World Auto Steels. The Ferrite phase, with its iron content contributes to the material displaying an increased level of ductility whilst, the martensitic phase provides the steel with increased mechanical strength.
Technical Paper

Assessing the Effect of Torque Converter Losses on the NOx Emission and Engine Stability in TGDI AT Vehicle

2021-10-01
2021-28-0185
The emission norms around the world are continuously changing and getting stringent with every revision. India is on its way to make its emission norms at par with that prevailing in the developed nations. The cold-start condition is an important factor affecting vehicle emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles. In this paper, the effects of change in torque converter losses on emissions are experimentally investigated in a TGDI AT vehicle. The instant engagement of the torque converter puts a sudden load on the engine and thus affects its stability. Thus, to overcome the stability issue, Engine Torque has to be simultaneously increased for smooth engagement. As a result, the likelihood of the slightly leaner air-fuel mixture in the cylinder, which results in higher NOx formation, is much greater in an AT vehicle than that of a similar MT vehicle.
Technical Paper

A Holistic Approach of Developing New High Strength Cast Iron for Weight Optimization

2021-09-22
2021-26-0244
Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition.
Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Frictional Power Loss Distribution of Automotive Axles - Experimental Evaluation and Analysis

2021-09-22
2021-26-0483
The given paper presents the main elements of frictional power loss distribution in an automotive axle for passenger car. For reference two different axles were compared of two different sizes to understand the impact of size and ratio of gear and bearings on power loss characteristics. It was observed that ~50% of total axle power loss is because of pinion head-tail bearing and its seals, which is very significant. Roughly 30% of total power loss is contributed by pinion-ring gear pair and differential bearings and remaining ~20% by wheel end bearing and seals. With this study the automotive companies can take note of the area where they need to focus more to reduce their CO2 emissions to meet the stringent BS6, CAFÉ and RDE emission norms.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

An Extensive Optimization Methodology to Validate the Exhaust After-Treatment System of a BS VI Compliant Modern Diesel Engine

2020-09-25
2020-28-0483
The Indian automotive industry has migrated from BS IV (Bharat stage IV) to BS VI (Bharat Stage VI) emission norms from 1st April 2020. This two-step migration of the emission regulations from BS IV to BS VI demands significant engineering efforts to design and integrate highly complex exhaust after-treatment system (EATS). In the present work, the methodology used to evaluate the EATS of a high power-density 1.5-liter diesel engine is discussed in detail. The EATS assembly of the engine consists of a diesel oxidation catalyst (DOC), a diesel particulate filter with selective catalytic reduction coating (sDPF), urea dosing module and urea mixer. Typically, all these components that are needed for emission control are integrated into a single canning of shell thickness ~1.5mm. Moreover, the complete EATS is directly mounted onto the engine with suitable mounting brackets on the cylinder block and cylinder head.
Technical Paper

UDM Tip Temperature Control Using Thermosyphon Effect

2020-08-18
2020-28-0040
In today’s automobile industry where BS6 emission is posing a high challenge for aggregate development, cost control and with limited timeline. The main target is to provide the cooling system to have less impact on the in terms of cost, weight and to meet the challenging engineering requirement. Thus, the frugal engineering comes into the picture. This paper shows the application of thermosyphon principle for UDM injector cooling thereby reducing the rotation parts and power consumption such as an electric pump. Thermosyphon is a method of passive heat exchange and is based on natural convection, which circulates a fluid without the necessity of a mechanical or electric pump. The natural convection of the liquid commences when heat transfer to the liquid gives rise to a temperature difference from one side of the loop to the other.
Technical Paper

Gear Shift Pattern Optimization for Best Fuel Economy, Performance and Emissions

2020-04-14
2020-01-1280
As the FTP-75 drive cycle does not have a prescribed gear shift pattern, automotive OEMs have the flexibility to design. Conventionally, gear shift pattern was formulated based on trial and error method, typically with 10 to 12 iterations on chassis dynamometer. It was a time consuming (i.e. ~ 3 to 4 months) and expensive process. This approach led to declaring poor fuel economy (FE). A simulation procedure was required to generate a gear shift pattern that gives optimal trade-off amongst conflicting objectives (FE, performance and emissions). As a result, a simulation tool was developed in MATLAB to generate an optimum gear shift pattern. Three different SUV/UV models were used as test vehicles in this study. Chassis dyno testing was conducted, and data was collected using the base and optimized gear shift patterns. Dyno test results with optimized gear shift pattern showed FE improvement of ~ 4 to 5% while retaining the NOx margin well above engineering targets.
Technical Paper

EGR Flow Control Strategy for a Smaller Capacity Diesel Engine Using a Phase Shifting Chamber

2020-04-14
2020-01-1358
Exhaust gas recirculation (EGR) is an effective strategy to control NOx emissions in diesel engines. EGR reduces NOx through lowering the oxygen concentration in the combustion chamber, as well as through heat absorption. The stringent emission norms have forced diesel engines to further improve thermal efficiency and reduce nitrogen oxides (NOx). Throttle control is adopted in diesel intake system to control the EGR & fresh charge flow and to meet the emissions norms. In three or lesser cylinder. diesel engines, predominantly single and two-cylinder diesel engines, there is a higher possibility of the exhaust gas reaching the intake throttle and Particulate matter getting deposited on the throttle body. This can significantly affect the idling stability and intake restriction in prolonged usage. In idling condition, the clogged throttle body stagnates the fresh charge from entering the cylinder. The work aims at the study of flow pattern for EGR reaching the throttle body.
Technical Paper

Calibration and Parametric Investigations on Lean NOx Trap and Particulate Filter Models for a Light Duty Diesel Engine

2020-04-14
2020-01-0657
To comply with the stringent future emission mandates of light-duty diesel engines, it is essential to deploy a suitable combination of emission control devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNOx converter (LNT or SCR). Arriving at optimum size and layout of these emission control devices for a particular engine through experiments is both time and cost-intensive. Thus, it becomes important to develop suitable well-tuned simulation models that can be helpful to optimize individual emission control devices as well as arrive at an optimal layout for achieving higher conversion efficiency at a minimal cost. Towards this objective, the present work intends to develop a one-dimensional Exhaust After Treatment Devices (EATD) model using a commercial code. The model parameters are fine-tuned based on experimental data. The EATD model is then validated with experiment data that are not used for tuning the model.
X