Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Wet Liner Vibration on Ring-liner Interaction in Heavy-duty Engines

2023-09-29
2023-32-0140
Lubricating oil consumption (LOC) is a direct source of hydrocarbon and particulate emissions from internal combustion engines. LOC also inhibits the lifetime of exhaust aftertreatment system components, preventing their ability to effectively filter out other harmful emissions. Due to its influence on piston ring- bore conformability, bore distortion is arguably the most critical parameter for engine designers to consider in prevention of LOC. Bore distortion also has a significant influence on the contact forces between the piston ring and cylinder wall, which determine the wear rate of the ring and cylinder wall and can cause durability issues. Two drivers of bore distortion: thermal expansion and head bolt stresses, are routinely considered in conformability and contact analyses. Separately, bore distortion/vibration due to piston impact and combustion/cylinder pressures has been previously analyzed in wet liner engines for coolant cavitation and noise considerations.
Technical Paper

Predictive Piston Cylinder Unit Simulation - Part II: Novel Methodology of Friction Simulation Validation Utilizing Floating-Liner Measurements

2023-04-11
2023-01-0415
The increasing demand for environmentally friendly and fuel-efficient transportation and power generation requires further optimization and minimization of friction power losses. With up to 50% of the overall friction, the piston cylinder unit (PCU) shows most potential within the internal combustion engine (ICE) to increase mechanical efficiency. Calculating friction of internal combustion engines, especially the friction contribution from piston rings and skirt, requires detailed knowledge of the dynamics and lubrication regime of the components being in contact. Part I of this research presents a successful match of simulated and measured piston inter-ring pressures at numerous operation points [1] and constitutes the starting point for the comparison of simulated and measured piston group friction forces as presented in this research.
Technical Paper

Benefits of Octane-On-Demand in an E10-Gasoline Engine Vehicle Using an On-Board Fuel Separator

2022-03-29
2022-01-0424
Knock in gasoline engines at higher loads is a significant constraint on torque and efficiency. The anti-knock property of a fuel is closely related to its research octane number (RON). Ethanol has superior RON compared to gasoline and thus has been commonly used to blend with gasoline in commercial gasolines. However, as the RON of a fuel is constant, it has not been used as needed in a vehicle. To wisely use the RON, an On-Board Separation (OBS) unit that separates commercial gasoline with ethanol content into high-octane fuel with high ethanol fraction and a lower octane remainder has been developed. Then an onboard Octane-on-demand (OOD) concept uses both fuels in varying proportion to provide to the engine a fuel blend with just enough RON to meet the ever changing octane requirement that depends on driving pattern.
Journal Article

Stainless Steel Thermal Spray Coating of Cylinder Bores for VC-Turbo Engine

2021-04-06
2021-01-0343
Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced.
Technical Paper

Aerodynamic Sensitivity Analysis of Tire Shape Factors

2020-04-14
2020-01-0669
It is well known that the wheels and tires account for approximately 25% of the overall aerodynamic drag of a vehicle. This is because the contribution of the tires to aerodynamic drag stems from not only aerodynamic drag itself directly caused by exposure to the main flow (tire CD), but also from aerodynamic drag indirectly caused by the interference between tire wakes and the upper body flow (body CD). In the literature, as far as the authors are aware, there have been no reports that have included the following all four aspects at once: (1) CD sensitivity to detailed tire shape factors; (2) CD sensitivity differences due to different vehicle body types; (3) CD sensitivity for each aerodynamic drag component, i.e., tire CD and body CD; (4) Flow structure and mechanism contributing to each aerodynamic drag component. The purpose of this study was to clarify CD sensitivity to tire shape factors for tire CD and body CD considering two different vehicle body types, sedan and SUV.
Technical Paper

Design Methodology for Motor Thermal Management in Vehicle Electrification

2019-12-19
2019-01-2368
In order to improve the accuracy of the coil temperature prediction, detailed fundamental experiments have been conducted on thermal resistances that are caused by the void air gap and contact surfaces. The thermal resistance of the coil around the air gap can be calculated by an air gap distance and air heat conductivity. Contact surface thermal resistance between the core and the housing was constant regardless of the press-fitting state in this experiment. Prediction accuracy of the coil temperature is improved by including the heat resistance characteristics that is obtained by the basic experiment to conjugate heat transfer analysis model.
Technical Paper

Study of the Effects of Oil Supply and Piston Skirt Profile on Lubrication Performance in Power Cylinder Systems

2019-12-19
2019-01-2364
In internal combustion engines, the majority of the friction loss associated with the piston takes place on the thrust side in early expansion stroke. Research has shown that the Friction Mean Effective Pressure (FMEP) of the engine can be reduced if proper modifications to the piston skirt, which is traditionally barrel-shaped, are made. In this research, an existing model was applied for the first time to study the effects of different oil supply strategies for the piston assembly. The model is capable of tracking lubricating oil with the consideration of oil film separation from full film to partial film. It is then used to analyze how the optimized piston skirt profile investigated in a previous study reduces friction.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Journal Article

Aerodynamic Sensitivity Analysis of Wheel Shape Factors

2019-04-02
2019-01-0667
Wheels play an important role in determining the aerodynamic drag of passenger vehicles. This is because the contribution of wheels to aerodynamic drag comes from not only the wheels themselves, but also from the interference effect between wheel wakes and the base wake. As far as the authors are aware, there have been no reports about aerodynamic drag sensitivity to wheel shape factors for different vehicle types and different exterior body shapes. The purpose of this study was to clarify CD sensitivity to wheel shape factors for a sedan and an SUV, including different rear fender shapes. Many different wheel configurations were investigated in terms of the CD, base pressure and flow fields in wind tunnel tests. Multiple regression analyses were conducted to clarify CD sensitivity to each wheel shape factor based on the test data. This study revealed high CD sensitivity factors for both the sedan and SUV.
Journal Article

Modeling of Oil Transport between Piston Skirt and Cylinder Liner in Internal Combustion Engines

2019-04-02
2019-01-0590
The distribution of lubricating oil plays a critical role in determining the friction between piston skirt and cylinder liner, which is one of the major contributors to the total friction loss in internal combustion engines. In this work, based upon the experimental observation an existing model for the piston secondary motion and skirt lubrication was improved with a physics-based model describing the oil film separation from full film to partial film. Then the model was applied to a modern turbo-charged SI engine. The piston-skirt FMEP predicted by the model decreased with larger installation clearance, which was also observed from the measurements using IMEP method at the rated. It was found that the main period of the cycle exhibiting friction reduction is in the expansion stroke when the skirt only contacts the thrust side for all tested installation clearances.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

Evaluation of an Open-grill Vehicle Aerodynamics Simulation Method Considering Dirty CAD Geometries

2018-04-03
2018-01-0733
In open-grille vehicle aerodynamics simulation using computational fluid dynamics, in addition to basic flow characteristics, such as turbulent flow with a Reynolds number of several million on the bluff body, it is important to accurately estimate the cooling air flow introduced from the front opening. It is therefore necessary to reproduce the detailed geometry of the entire vehicle including the engine bay as precisely as possible. However, there is a problem of generating a good-quality calculation grid with a small workload. It usually takes several days to a week for the pretreatment process to make the geometry data ‘clean’ or ‘watertight’. The authors proposed a computational method for complex geometries with a hierarchical Cartesian grid and a topology-independent immersed boundary method with dummy cells that discretize the geometry on a cell-by-cell basis and can set an imaginary point arbitrarily.
Technical Paper

A Study of Drag Reduction Devices for Production Pick-up Trucks

2017-03-28
2017-01-1531
This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
Technical Paper

Effects of Fuel Properties Associated with In-Cylinder Behavior on Particulate Number from a Direct Injection Gasoline Engine

2017-03-28
2017-01-1002
The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
Journal Article

Silicon Carbide Inverter for EV/HEV Application featuring a Low Thermal Resistance Module and a Noise Reduction Structure

2017-03-28
2017-01-1669
This paper presents the technologies incorporated in an electric vehicle (EV)/hybrid electric vehicle (HEV) inverter built with power semiconductors of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) instead of conventional silicon (Si) insulated gate bipolar transistors (IGBTs). A SiC inverter prototype of 2.9 L in size for driving an 80-kW motor was fabricated and evaluated on a motor test bench. The SiC inverter prototype attained average efficiency of 98.5% in the Worldwide harmonized Light-duty Test Cycle (WLTC) driving mode. The two main technologies achieved with this SiC inverter prototype are described. The first one is a new direct-cooled power module with a thick copper (Cu) heat spreader located under the semiconductors that improves thermal resistance by 34% compared with a conventional direct-cooled power module.
Journal Article

Coupled 6DoF Motion and Aerodynamic Crosswind Simulation Incorporating Driver Model

2017-03-28
2017-01-1525
Because of rising demands to improve aerodynamic performance owing to its impact on vehicle dynamics, efforts were previously made to reduce aerodynamic lift and yawing moment based on steady-state measurements of aerodynamic forces. In recent years, increased research on dynamic aerodynamics has partially explained the impact of aerodynamic forces on vehicle dynamics. However, it is difficult to measure aerodynamic forces while a vehicle is in motion, and also analyzing the effect on vehicle dynamics requires measurement of vehicle behavior, amount of steering and other quantities noiselessly, as well as an explanation of the mutual influence with aerodynamic forces. Consequently, the related phenomena occurring in the real world are still not fully understood.
Journal Article

An Investigation on the Ignition Characteristics of Lubricant Component Containing Fuel Droplets Using Rapid Compression and Expansion Machine

2016-10-17
2016-01-2168
With the development of downsized spark ignition (SI) engines, low-speed pre-ignition (LSPI) has been observed more frequently as an abnormal combustion phenomenon, and there is a critical need to solve this issue. It has been acknowledged that LSPI is not directly triggered by autoignition of the fuel, but by some other material with a short ignition delay time. It was previously reported that LSPI can be caused by droplets of lubricant oil intermixed with the fuel. In this work, the ignition behavior of lubricant component containing fuel droplets was experimentally investigated by using a constant volume chamber (CVC) and a rapid compression and expansion machine (RCEM), which enable visualization of the combustion process in the cylinder. Various combinations of fuel compositions for the ambient fuel-air mixture and fractions of base oil/metallic additives/fuel for droplets were tested.
Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Technical Paper

Introducing a New Piston Skirt Profile to Reduce Engine Friction

2016-04-05
2016-01-1046
The piston’s skirt shape is a key design parameter since it critically influences lateral displacement, tilting movement, oil transport and consequently engine performances. This study proposes an alternative skirt profile that aims to reduce frictional losses between the piston and cylinder liner. Qualitatively, the proposed profile, aims to reduce solid-to-solid contact friction by increasing the total hydrodynamic forces generated on the skirt to balance side forces, and to prevent both sides of the skirt to interact with the liner simultaneously. The new skirt’s profile has been first studied and optimized using a piston secondary motion model and then prototyped and tested on a floating liner test bench, showing a 12% average reduction in total piston FMEP.
Technical Paper

Improvement of Practical Electric Consumption by Drag Reducing under Cross Wind

2016-04-05
2016-01-1626
Reducing vehicle fuel consumption has become one of the most important issues in recent years in connection with environmental concerns such as global warming. Therefore, in the vehicle development process, attention has been focused on reducing aerodynamic drag as a way of improving fuel economy. When considering environmental issues, the development of vehicle aerodynamics must take into account real-world driving conditions. A crosswind is one of the representative conditions. It is well known that drag changes in a crosswind compared with a condition without a crosswind, and that the change depends on the vehicle shape. It is generally considered that the influence of a crosswind is relatively small since drag accounts for a small proportion of the total running resistance. However, for electric vehicles, the energy loss of the drive train is smaller than that of an internal combustion engine (ICE) vehicle.
X