Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Development of film heat transfer model based on multiphase flow numerical analysis

2023-09-29
2023-32-0012
Automobiles will have to be applied strict regulations such as Euro7 against PM, HC, CO. The generation of these components are related to fuel deposition to the wall surface of the combustion chamber. Therefore, the fuel injection model of engine combustion CFD requires accurate prediction about the deposition and vaporization of fuel on the combustion chamber. In this study, multiphase flow numerical analysis that simulates fuel behavior on the wall surface was conducted first. Then, two model formulae about the contact area and the heat flux of a liquid film was constructed based on the result of multiphase flow numerical analysis method. Finally, the new film heat transfer model was constructed from these model formulae. In addition, it was confirmed that new heat transfer model can predict the liquid film temperature obtained by multiphase flow numerical analysis method accurately.
Technical Paper

Vaporization and Turbulence Characteristics of High Pressure Gasoline Sprays Impinging on a Wall

2019-12-19
2019-01-2247
To get a better understanding of the characteristics of the high pressure gasoline sprays impinging on a wall, a fundamental study was conducted in a high-temperature high-pressure constant volume vessel under the simulated engine conditions of in-cylinder pressures, temperatures, and wall temperatures. The injection pressure was varied from 20 to 120 MPa. The spray tip penetration, vapor mass distribution, and vaporization rate were quantitatively measured with the laser absorption-scattering (LAS) technique. The velocity fields of the wall-impinging sprays under vaporizing conditions were measured with the particle image velocimetry (PIV) technique using silicone oil droplets as tracers. The effects of injection pressure and spray/wall interactions on spray characteristics were investigated. The results showed that the increased injection pressure improved penetration, vaporization, and turbulence of the sprays.
Technical Paper

Aerodynamics Evaluation of Road Vehicles in Dynamic Maneuvering

2016-04-05
2016-01-1618
A road vehicle’s cornering motion is known to be a compound motion composed mainly of forward, sideslip and yaw motions. But little is known about the aerodynamics of cornering because little study has been conducted in this field. By clarifying and understanding a vehicle’s aerodynamic characteristics during cornering, a vehicle’s maneuvering stability during high-speed driving can be aerodynamically improved. Therefore, in this study, the aerodynamic characteristics of a vehicle’s cornering motion, i.e. the compound motion of forward, sideslip and yaw motions, were investigated. We also considered proposing an aerodynamics evaluation method for vehicles in dynamic maneuvering. Firstly, we decomposed cornering motion into yaw and sideslip motions. Then, we assumed that the aerodynamic side force and yaw moment of a cornering motion could be expressed by superposing linear expressions of yaw motion parameters and those of sideslip motion parameters, respectively.
Technical Paper

A Study on Innovation of Material Recycles: World's First Implementation to Use ELV Bumper Materials for New Car Bumpers

2013-04-08
2013-01-0831
The purpose of this study is to define requirements for technological and business success in the world's first implementation of Reverse-Supply-Chain, in which bumper materials of end-of-life vehicles (ELV) are recycled for use as ingredients in new bumper materials. In Japan, ELVs are recovered following to the government regulation. About 20% (700,000 ton) of such collected ELVs are automotive shredder residues (ASR), most of which are burnt as fuel or used as landfill trash. ASRs are mainly plastics, which are largely used as materials of bumpers. The reverse-supply-chain was started as a small business by a collaboration between the car manufacture (Mazda), dismantler, and resource-recycling business operator, and enhanced by the development of easy-to-recycle bumpers, technologies of paint removal from crushed bumpers and sorting-out, a material quality control method, and improvement in transportation efficiency.
Technical Paper

A Study of Compatibility and Vehicle Front Stiffness Based on Real-World Accidents

2007-08-05
2007-01-3719
The aim of this research was to find vehicle characteristics including stiffness that is effective for compatibility performance. Compatibility is said to be affected by three factors: vehicle mass, geometry and stiffness (1, 2). Of these factors, stiffness has more flexibility at the design stage than vehicle mass and geometry which are limited by the vehicle application. However, the stiffness is assumed to have a conflict issue between the self-protection and the partner-protection (3). In this research, it was analyzed comprehensively how some defined factors such as stiffness, mass, crash stroke and other vehicle characteristics indices relate to each occupant injury rate of the case and its partner vehicle in the real-world accidents. Both “front-to-front” and “front-to-side” crash occupants were covered.
Technical Paper

Seat Lateral Support Evaluation With SAE Manikin

2005-04-11
2005-01-1006
In this report, we proposed an objective evaluation method of the seat lateral support according to the mechanisms to create the performance differences that we reported previously [1]. First, we showed an effect of scrutinizing Seat Pressure Distribution's change during vehicle turn to gain a quantitative index for explaining subjective evaluation results. Second, we showed the examples of the differences of the results according to the subjects and selected the best-correlated subject among them with a market survey result. Then, we contrived a loading condition to SAE manikin to reproduce the subject's Seat Pressure Distribution. Final, by a specific calculation of the Seat Pressure Distribution, the method to indicate the performance rating that had strong correlation with market survey was clarified.
Technical Paper

Seat Lumbar Support Evaluation With ASPECT Manikin

2005-04-11
2005-01-1007
Seat lumbar support is thought to be essential for seating comfort as it plays important role in the driver's fatigue during long term driving. We tried to evaluate the lumbar support performance objectively with Seat Pressure Distribution. First, the tolerance in the measurement was eliminated by application of ASPECT manikin that reproduced a human seating torso posture [1, 2]. Second, an analysis method to visualize the seat support balance on the human back was developed. Third, a hypothesis for the optimal support balance to minimize the fatigue was proposed according to the fatigue growing mechanisms. Examining the deviation of each seat result from the optimal support, the performances were quantitatively evaluated. In addition to that, the effect of the lumbar support adjuster was taken into consideration to predict the market evaluation more precisely.
Technical Paper

Aggressivity-Reducing Structure for Large Vehicles in Frontal Car-to-Car Crash

2004-03-08
2004-01-1163
This paper clarifies aggressivity reduction approach for MPV, Multi-Purpose Vehicles, derived from large passenger vehicles toward small passenger vehicles. The effects of aggressivity-reducing approach were measured through full-frontal rigid barrier crash simulations with TRL aluminum honeycomb by Finite Element Method. The front-end structures of large vehicles studied in this paper based on this aggressivity reduction approach show good front-end homogeneity and low average height of force. The structures were also found to effectively reduce aggressivity toward small vehicles by car-to-car simulation. However, there are some cases where the effect was influenced by overlap ratios. From this result, overlap ratio is considered to be one of the important factors to improve compatibility performance.
Technical Paper

Characterization of Mixture Formation Processes in D.I. Gasoline Sprays by the Laser Absorption Scattering (LAS) Technique - Effect of Injection Conditions

2003-05-19
2003-01-1811
Mixture formation processes play a vital role on the performance of a D.I. Gasoline engine. Quantitative measurement of liquid and vapor phase concentration distribution in a D.I. gasoline spray is very important in understanding the mixture formation processes. In this paper, an unique laser absorption scattering (LAS) technique was employed to investigate the mixture formation processes of a fuel spray injected by a D.I. gasoline injector into a high pressure and temperature constant volume vessel. P-xylene, which is quite suitable for the application of the LAS technique, was selected as the test fuel. The temporal variations of the concentration distribution of both the liquid and vapor phases in the spray were quantitatively clarified. Then the effects of injection pressure and quantity on the concentration distributions of both the liquid and vapor phases in the spray were analyzed.
Technical Paper

Evaluation of Aerodynamic Noise Generated in Production Vehicle Using Experiment and Numerical Simulation

2003-03-03
2003-01-1314
Aerodynamic noise generated in production vehicle has been evaluated using experiment and numerical simulation. Finite difference method (FDM) and finite element method (FEM) are applied to analyze the flow field, and Lighthill's analogy is employed to conduct acoustic analysis. The flow fields around front-pillar obtained by numerical simulations agree with those by experiment for two cases with different front-pillar shape. Moreover, the distribution of acoustic source predicted by FEM is consistent with that obtained by experiment. Present study ascertained the feasibility and applicability of FEM with SGS model towards prediction of aerodynamic noise generated in production vehicle.
Technical Paper

Accidents Data Analysis for the Real World Safety Enhancement

2003-03-03
2003-01-0504
To reduce real world fatal/serious/minor injuries, factors causing such injuries should be investigated in depth from wider perspectives. The aim of this paper is to clarify the factors based on Japanese accident database compiled by ITARDA (Institute for Traffic Accident Research and Data Analysis). ITARDA database has data for injury rates, seatbelt use rate of driver and age of driver involved in crashes, etc. by vehicle model. As a result of an elaborate statistical analysis, the most influential and essential factors on all injuries including fatality were quantitatively found to be seatbelt use rate and vehicle weight. The increase by 1% in seatbelt use rate makes injury rate decrease by 7%. The influence of vehicle weight is 1.7 times higher than seatbelt use rate. Multiple regression analysis on these two parameters was also conducted. The present analysis successfully predicted all injury rates by model per 10,000 units.
Technical Paper

Investigation of Acceleration Performance Feeling on a Rotary Engine Sports Car with Driving Simulator

2003-03-03
2003-01-0121
Subjective evaluation tests of “Acceleration Performance Feeling” with a driving simulator have been carried out on a rotary engine sports car. Additionally, although the test condition is limited, a test on an in-line four-cylinder engine sedan has been carried out. Influencing factors were analyzed through the experimental design and the influences of acceleration, gas pedal controllability, engine sound and their interactions were quantified. As the result, it has been found that the interactions must be considered in addition to main effect of each factor to improve users' evaluation especially on a rotary engine sports car. Furthermore, it is concluded that influencing factors are different between a rotary engine sports car and an in-line four-cylinder engine sedan.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Planar Measurements of NO in an S.I. Engine Based on Laser Induced Fluorescence

1997-02-24
970877
To investigate NO formation in a combustion flame, PLIF (Planar Laser-Induced-Fluorescence) technique was applied to measure the NO fluorescence distribution in a constant-volume combustion chamber and in a sparkignition engine. The NO fluorescence distribution was taken by an image intensified CCD camera. In the constant-volume combustion chamber, the high NO fluorescence intensity was concentrically observed in the thin flame zone along the flame front. In postflame gas behind the flame zone, the NO fluorescence was widely distributed with weak intensity. In the case of the engine, the fluorescence was distributed in the broad flame zone. The fluorescence intensity had high value near the flame front, and decreased from the flame front to the postflame gas. As the equivalence ratio was changed, the fluorescence intensity reached maximum value at slightly lean condition.
Technical Paper

Driver Behavior Under a Collision Warning System - A Driving Simulator Study

1997-02-24
970279
Collision warning systems are expected to be an effective countermeasure to reduce traffic accidents; however there have been relatively few studies on the effects of such warning systems on the driver's collision avoidance behavior. In this study, a driving simulator which had a large motion system was used, and 45 subjects experienced crash imminent situations in which the preceding cars suddenly decelerated while the subject looked off the road. Analyzing the subjects' collision avoidance behaviors, it was found that the braking response time and the number of simulated collisions were substantially decreased with collision warnings. Furthermore, potential reduction of rear-end collisions on the road was estimated by modeling the driver's braking response.
X