Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

An Electromechanical Actuation System for an Expendable Launch Vehicle

1992-08-03
929112
A major effort at the NASA Lewis Research Center in recent years has been to develop electromechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt to overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times.
Technical Paper

Overview of the NASA Lewis Component Technology Program for Stirling Power Converters

1992-08-03
929260
This paper presents an update on the NASA Lewis Stirling component technology program. The component technology program has been organized as part of the NASA Lewis effort to develop Stirling converter technology for space power applications. The Stirling space power program is part of the High Capacity Power element of the NASA Civil Space Technology Initiative (CSTI). Lewis is also providing technical management of a DOE-funded project to develop Stirling converter systems for distributed dish solar terrestrial power applications. The Lewis component technology program is coordinated with the primary contract efforts of these projects but is aimed at longer term issues, advanced technologies, and independent assessments. Topics to be discussed include bearings, linear alternators, controls and load interaction, materials/life assessment, and heat exchangers.
Technical Paper

Description of the SSF PMAD DC Testbed Control System Data Acquisition Function

1992-08-03
929222
The NASA Lewis Research Center in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation and resource management are being evaluated in the testbed.
Technical Paper

Overview and Evolution of the LeRC PMAD DC Test Bed

1992-08-03
929217
Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) has been actively involved in the development of electrical power system test beds to support of the overall design effort. Throughout this time, the SSFP Program has changed the design baseline numerous times, however, the test bed effort has endeavored to track these changes. Beginning in August 1989 with the baselining of an all DC System, a test bed was developed which supported this design baseline. However, about the time of the Test Bed's Completion in December 1990, the SSFP was again going through another design scrub known as Restructure. This paper describes the LeRC PMAD DC Test Bed and highlights the changes that have taken place in the Test Bed configuration and design resulting from the SSFP Restructure Exercise in December 1990.
Technical Paper

Description of the PMAD Systems Test Bed Facility and Data System

1992-08-03
929221
The National Aeronautics and Space Administration (NASA), Lewis Research Center (LeRC) is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The Power Management and Distribution (PMAD) Systems Testbed was assembled to support the design and early evaluation of SSF EPS operating concepts. The PMAD Systems Testbed represents a portion of the SSF EPS, containing intelligent switchgear, power conditioning devices, and the EPS Controllers. The PMAD Systems Testbed facility is discussed, including the power sources and loads available. A description of the PMAD Data System (PDS) is presented. The PDS controls the testbed facility hardware, monitors and records the EPS control data bus and external data. The external data includes testbed voltages and currents along with facility temperatures, pressures, and flow rates. Transient data is collected utilizing digital oscilloscopes.
Technical Paper

Electromechanical Systems with Transient High Power Response Operating from a Resonant AC Link

1992-08-03
929113
The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This “zero loss” switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss.
Technical Paper

Overview of NASA Supported Stirling Thermodynamic Loss Research

1992-08-03
929462
The National Aeronautics and Space Administration (NASA) is funding research to characterize Stirling machine thermodynamic losses. NASA's primary goal is to improve Stirling design codes to support engine development for space and terrestrial power. However, much of the fundamental data is applicable to Stirling cooler and heat pump applications. The research results are reviewed. Much has been learned about oscillating-flow hydrodynamics, including laminar/turbulent transition, and tabulated data has been documented for further analysis. Now, with a better understanding of the oscillating-flow field, it is time to begin measuring the effects of oscillating flow and oscillating pressure level on heat transfer in heat exchanger flow passages and in cylinders. This critical phase of the work is just beginning.
Technical Paper

An Overview of the NASA Rotary Engine Research Program

1984-08-01
841018
This paper presents a brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center. The review covers the test results obtained from turbocharged rotary engines and preliminary results from a high performance single-rotor engine. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies are discussed. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies is also covered. Details are presented on single-rotor stratified-charge rotary engine research efforts, both in-house and on contract.
X