Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

International Space Station USOS Potable Development Water Dispenser

2008-06-29
2008-01-2010
The International Space Station (ISS) Russian Segment currently provides potable water dispensing capability for crewmember food and beverage rehydration. All ISS crewmembers rehydrate Russian and U.S. style food packages from this location. A new United States On-orbit Segment (USOS) Potable Water Dispenser (PWD) is under development. This unit will provide additional potable water dispensing capability to support an on-orbit crew of six. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to U.S. style food packages. It will receive iodinated water from the Fuel Cell Water Bus in the U.S. Laboratory element. The unit will provide potable-quality water, including active removal of biocidal iodine prior to dispensing. A heater assembly contained within the unit will be able to supply up to 2.0 liters of hot water (65 to 93°C) every thirty minutes.
Technical Paper

Development of Urine Receptacle Assembly for the Crew Exploration Vehicle

2008-06-29
2008-01-2144
The Urine Receptacle Assembly (URA) initially was developed for Apollo as a primary means of urine collection. The aluminum housing with stainless steel honeycomb insert provided all male crewmembers with a non-invasive means of micturating into a urine capturing device and then venting to space. The performance of the URA was a substantial improvement over previous devices but its performance was not well understood. The Crew Exploration Vehicle (CEV) program is exploring the URA as a contingency liquid waste management system for the vehicle. URA improvements are required to meet CEV requirements, including consumables minimization, flow performance, acceptable hygiene standards, crew comfort, and female crewmember capability. This paper presents the results of a historical review of URA performance during the Apollo program, recent URA performance tests on the reduced gravity aircraft under varying flow conditions, and a proposed development plan for the URA to meet CEV needs.
Technical Paper

Development of the NASA ZPS Mark III 57.2-kN/m2 (8.3 psi) Space Suit

1988-07-01
881101
The NASA-developed space-suit configurations for Project Mercury and the Gemini Program originated from high-altitude-aircraft full-pressure-suit technology. These early suits lacked sophisticated mobility systems, since the suit served primarily as a backup system against the loss of cabin pressure and required limited pressurized intravehicular mobility functions for a return capability. Beginning with the Gemini Program, enhanced mobility systems were developed to enable crewmembers to perform useful tasks outside the spacecraft. The zero-prebreathe Hark III (ZPS Mk III) model of a higher operating pressure (57.2 kN/m2 (8.3 psi)) space-suit assembly represents a significant phase in the evolutionary development of a candidate operational space-suit system for the Space Station Program. The various design features and planned testing activities for the ZPS Mk III 57.2-kN/m2 (8.3 psi) space suit are described and identified.
Technical Paper

Shuttle Waste Management System Design Improvements and Flight Evaluation

1986-07-14
861003
The Space Shuttle waste management system has undergone a variety of design changes to improve performance and man-machine interface. These design improvements have resulted in more reliable operation and hygienic usage. Design enhancements include individual urinals, increased urine collection airflows, increased solids storage capacity, easier access to personal hygiene items, and additional wet trash stowage. The development and flight evaluation of these improvements are described herein. The Space Shuttle Orbiter has proved to be an invaluable test bed for development and in-flight evaluation of life support and habitability concepts which involve transport or separation of solids, liquids, and gases in a zero-g environment.
Technical Paper

Regenerable Non-Venting Thermal Control Subsystem for Extravehicular Activity, 1983

1983-07-11
831151
With the advent of manned spacecraft opportunities requiring routine and complex extravehicular activities (EVA) a new concept for heat rejection is mandatory in order to realize maximum crewmember productivity. An optimum extravehicular mobility unit (EMU) thermal control system must be capable of successful operation without requiring expendables and without introducing contaminants into the environment, and be readily regenerable. This paper presents a regenerable non-venting thermal control subsystem requirements specification generated for a Shuttle-related EMU, identifies candidate concepts capable of fulfilling the requirements for each thermal control subsystem application, evaluates each candidate concept with respect to the subsystem requirements, and selects the best approach for each requirement.
X