Refine Your Search

Topic

Author

Search Results

Technical Paper

High-Porosity Honeycomb Substrate with Thin-Wall and High Cell Density Using for SCR Coating to Meet Worldwide Tighter Emission Regulations

2022-03-29
2022-01-0550
Selective catalyst reduction (SCR) using cordierite honeycomb substrate is generally used as a DeNOx catalyst for diesel engines exhaust in both on-road and commercial off-highway vehicles to meet today’s worldwide emission regulations. Worldwide NOx emission regulations will become stricter, as represented by CARB2027 and EuroVII. Technologies which can achieve further lower NOx emissions are required. Recently, several technologies, like increased SCR catalyst loading amount on honeycomb substrates, and additional SCR catalyst volume in positions closer to the engine are being considered to achieve ultra-low NOx emissions. However, undesirable pressure drop increase and enlarging after treatment systems will be caused by adopting these technologies. Therefore, optimization of the material and honeycomb cell structure for SCR is inevitable to achieve ultra-low NOx emissions, while minimizing any system drawbacks.
Technical Paper

Achieving SULEV30 Regulation Requirement with Three-Way Catalyst on High Porosity Substrate while Reducing Platinum Group Metal Loading

2022-03-29
2022-01-0543
Fleet average SULEV30 emissions over FTP-75 must be met under full implementation of US Tier 3/LEV III emission regulation in 2025. The majority of SULEV30 certified 2021 model year vehicles are equipped with ≤ 2L displacement engines and some models adopt hybrid powertrain systems. Pickup trucks account for > 20% of passenger vehicles in the US. They could represent a quick route to meet fleet average SULEV30 targets. The newest pickup truck models are typically ULEV50 or ULEV70 certified. To reach SULEV30 or lower emission category, total tailpipe emissions must be reduced by more than 40%. Improvement of cold start emission is essential because over 70% of regulated emission is emitted during the first 60 seconds of a drive cycle with current engine and aftertreatment technology. High porosity (HP) ceramic substrate is designed to reduce thermal mass and time required to reach three-way catalyst (TWC) active temperature compared to conventional ceramic substrates.
Journal Article

Development of a Ceramic EHC

2022-03-29
2022-01-0536
In recent years, electrically heated catalysts (EHCs) have been developed to achieve lower emissions. In several EHC heating methods, the direct heating method, which an electric current is applied directly to the catalyst substrate, can easily activate the catalyst before engine start-up. The research results reported on the use of the direct heating EHC to achieve significant exhaust gas purification during cold start-up [1]. From the perspective of catalyst loading, ceramics is considered to be a better material for the substrate than metal due to the difference in coefficient of thermal expansion between the catalyst and the substrate, but the EHC made of ceramics has difficulties such as controllability of the current distribution, durability and reliability of the connection between the substrate and the electrodes.
Technical Paper

High-Porosity Cordierite Honeycomb Substrate Design Parameter Study in Combination with Vanadia SCR

2016-04-05
2016-01-0949
Ammonia Selective Catalytic Reduction (SCR) is a key emission control component utilized in diesel engine applications for NOx reduction. There are several types of SCR catalyst currently in the market: Cu-Zeolite, Fe-Zeolite and Vanadia. Diesel vehicle and engine manufacturers down select their production SCR catalyst primarily based on vehicle exhaust gas temperature operation, ammonia dosing strategy, fuel quality, packaging envelope and cost. For Vanadia SCR, the operating temperature is normally controlled below 550oC to avoid vanadium sublimation. In emerging markets, the Vanadia SCR is typically installed alone or downstream of the DOC with low exhaust gas temperature exposure. Vanadia SCR is also utilized in some European applications with passive DPF soot regeneration. However, further improvement of Vanadia SCR NOx conversion at low exhaust gas temperatures will be required to meet future emission regulations (i.e.: HDD Phase 2 GHG).
Journal Article

Development of High Porosity Cordierite Honeycomb Substrate for SCR Application to Realize High NOx Conversion Efficiency and System Compactness

2014-04-01
2014-01-1528
Today the Ammonia Selective Catalytic Reduction (SCR) system with good NOx conversion is the emission technology of choice for diesel engines globally. High NOx conversion SCR systems combined with optimized engine calibration not only address the stringent NOx emission limits which have been introduced or are being considered for later this decade, but also reduce CO2 emissions required by government regulations and the increase in fuel economy required by end-users. Reducing the packaging envelope of today's SCR systems, while retaining or improving NOx conversion and pressure drop, is a key customer demand. High SCR loadings ensure high NOx conversion at very low temperatures. To meet this performance requirement, a High Porosity Substrate which minimizes the pressure drop impact, was introduced in SAE Paper 2012-01-1079 [1], [2], [3].
Technical Paper

Interior Noise evaluation of Electric Vehicle: Noise source contribution analysis

2011-05-17
2011-39-7229
Global environment protection, Co2 emission reduction and so on, is an important problem in automotive industry. An Electric Vehicle (EV) production is one of policies. Co2 emission of EV is lower than Internal Combustion Engine (ICE), petrol and diesel engine. On the other hand, customer's needs for the comfort on driving increase year after year. So it's an important factor for new car performance. Generally speaking, it's thought that the noise and vibration performance of EV have the better of ICE performance. However the aerodynamic noise and road noise contribution for interior noise in EV rise in comparison with ICE, and moreover the sound quality change by new noise component of the motor noise. Therefore new sound evaluation method is needed for EV. So this paper demonstrates each noise component contribution in EV by new noise separation technology, and show the comparison result with EV and ICE.
Technical Paper

Study on Practicality of Electric Vehicle “i-MiEV” under Severe Weather

2011-05-17
2011-39-7241
Mitsubishi Motors Corporation succeeded in mass production of the electric vehicle “i-MiEV” which features leading-edge technologies epitomized by lithium-ion battery. The EV was released into the Japanese market in July 2009 and the European market in January 2011. In order to be used all over the world, the EV has to be practical and durable even under severe weather of extremely cold or extremely hot regions. In this paper we report some results of the tests conducted under extremely cold weather as well as extremely hot weather. From the test results the validity of the vehicle control system and the practicality of the EV are verified.
Technical Paper

Prediction of Air Cooling System for EV/HEV Battery Pack*

2011-05-17
2011-39-7269
An efficient cooling system will ensure the reliability of the EV/HEV (Electric Vehicle/Hybrid Electric Vehicle) battery system and extend their lifetime. In order to shorten design period or increase design iterations, a high-speed and high-precision prediction method for cooling is indispensable. For models, such as Mitsubishi i-MiEV, which use fresh air to cool batteries in the battery pack, a transient approach based on loosely coupled method is developed to predict temperature change of batteries. The results by our new approach are in good agreement with the experimental data. Moreover, for the EV/HEV using circulated air to cool its batteries, a second approach is also developed, which can predict the temperature variations of both EV/HEV batteries in the battery pack and the cooling air.
Technical Paper

Studies of Diesel Particulate Filter Performances by a Diesel Engine Simulator

2010-04-12
2010-01-0813
To evaluate various Diesel Particulate Filter (DPF) efficiently, accelerated tests are one of effective methods. In this study, a simulator composed by diesel fuel burners is proposed for fundamental DPF evaluations. Firstly particle size distribution measurement, chemical composition and thermal analysis were carried out for the particulate matter (PM) generated by the simulator with several combustion conditions. The PMs generated by specific conditions showed similar characteristics to PMs of a diesel engine. Through these investigations, mechanism of PM particle growth was discussed. Secondly diversified DPFs were subjected to accelerated pressure drop and filtration efficiency tests. Features of DPFs could be clarified by the accelerated tests. In addition, the correlation between DPF pressure drop performance and PM characteristics was discussed. Thirdly regeneration performance of the simulator's PM was investigated.
Technical Paper

Idling Stop System Coupled with Quick Start Features of Gasoline Direct Injection

2001-03-05
2001-01-0545
The gasoline direct injection engine starts significantly faster than a conventional engine. Fuel can be injected into the cylinder during the compression stroke at the same time of cranking start. When the spark plug ignites the mixture at the end of compression stroke, the engine has its first combustion, that is, the first combustion occurs within 0.2 sec after the start of cranking. This unique characteristic of quick startability has realized a idle stop system, which enables drivers to operate the vehicle in a natural manner.
Technical Paper

New Quiescent Combustion System for Heavy–Duty Diesel Engines to Overcome Exhaust Emissions and Fuel Consumption Trade–Off

2000-06-19
2000-01-1811
In the next few years, the USA, EU, and Japan plan to introduce very stringent exhaust emissions regulations for heavy–duty diesel engines, in order to enhance the protection air quality. This builds upon the heavy–duty diesel engine exhaust emissions regulations already in effect. At the same time, improvement in fuel consumption of heavy–duty diesel engines will be very important for lowering vehicle operating costs, conserving fossil fuel resources, and reduction of CO2 (greenhouse gas) levels. This paper presents a detailed review of a quiescent combustion system for a heavy–duty diesel engine, which offers breakthrough performance in terms of the exhaust emissions – fuel consumption trade–off, compared with the more conventional swirl supported combustion system. This conclusion is supported by experimental results comparing quiescent and swirl supported versions of various combustion system configurations.
Technical Paper

Development of High Performance Heavy-Duty Diesel Engine Oil to Extend Oil Drain Intervals: 5W30 Fully Synthetic Oil Containing MoDTC

2000-06-19
2000-01-1992
In this study, the oxidation stability, soot dispersancy, antiwear performance, and friction-reducing capability of friction modifiers (FMs) were evaluated, and an SAE 5W-30 fully synthetic oil with MoDTC type FMs was developed for heavy-duty diesel engines. In several engine tests, it was confirmed that the developed oil can double the oil drain interval in comparison with API CD SAE 30, even when EGR is applied, and improves the fuel efficiency.
Technical Paper

Innovative injection rate control with next-generation, common-rail fuel injection system

2000-06-12
2000-05-0061
Injection rate control is an important capability of the ideal injection system of the future. However, in a conventional Common-Rail System (CRS) the injection pressure is constant throughout the injection period, resulting in a nearly rectangular injection rate shape and offering no control of the injection rate. Thus, in order to realize injection rate control with a CRS, a "Next- generation Common-Rail System (NCRS)" was conceptualized, designed, and fabricated. The NCRS has two common rails, for low- and high-pressure fuel, and switches the fuel pressure supplied to the injector from the low- to the high- pressure rail during the injection period, resulting in control over the injection rate shape. The effects of injection rate shape on exhaust emissions and fuel consumption were investigated by applying this NCRS to a single- cylinder research engine.
Technical Paper

New Mitsubishi L4 5-Liter DI Diesel Engine

1998-11-16
982800
The 4M5 series of four-cylinder, in-line, direct-injection diesel engines has been released by Mitsubishi Motors Corporation for light and medium-duty trucks and buses. Featuring an updated structure and reflecting the employment of state-of-the-art technology in the design of every component, the new engine series offers high reliability and compact dimensions. Moreover, the new series well meets contemporary demands for high performance, low noise, and clean combustion.
Technical Paper

Mixing Control Strategy for Engine Performance Improvement in a Gasoline Direct Injection Engine

1998-02-23
980158
Spray motion visualization, mixture strength measurement, flame spectral analyses and flame behavior observation were performed in order to elucidate the mixture preparation and the combustion processes in Mitsubishi GDI engine. The effects of in-cylinder flow called reverse tumble on the charge stratification were clarified. It preserves the mixture inside the spherical piston cavity, and extends the optimum injection timing range. Mixture strength at the spark plug and at the spark timing can be controlled by changing the injection timing. It was concluded that reverse tumble plays a significant role for extending the freedom of mixing. The characteristics of the stratified charge combustion were clarified through the flame radiation analyses. A first flame front with UV luminescence propagates rapidly and covers all over the combustion chamber at the early stage of combustion.
Technical Paper

Application to Body Parts of High-Strength Steel Sheet Containing Large Volume Fraction of Retained Austenite

1998-02-23
980954
Several different steel sheets were tested for energy absorption, using hat square columns and dynamic crash testing. Results indicate that steel sheets containing large volume fraction of retained austenite have relatively high energy absorption. The relationship between retained austenite and energy absorption was analyzed. These special steel sheets have already been successfully used for production body parts, such a front-side-member, without difficulties arising in volume production.
Technical Paper

New Mitsubishi V8 19-Liter Turbocharged and Intercooled Diesel Engine

1997-05-01
971673
Mitsubishi Motors Corporation (MMC) has developed a new V configured 8 cylinder turbocharged and intercooled diesel engine (8M22T1) for the heavy-duty truck market. The engine is one of the first in its class to feature a common rail fuel injection system. This advanced engine management system was selected to meet the challenges of ever tightening emission regulation, specifically in the areas of smoke and noise. The 8M22T1 embodies a number of design innovations which have resulted in significant improvements in performance, fuel economy, durability and reliability.
Technical Paper

EGR Technologies for a Turbocharged and Intercooled Heavy-Duty Diesel Engine

1997-02-24
970340
In this study three EGR methods were applied to a 12 liter turbocharged and intercooled Dl diesel engine, and the exhaust emission and fuel consumption characteristics were compared. One method is the Low Pressure Route system, in which the EGR is taken from down stream of the turbine to the compressor entrance. The other two systems are variations of the High Pressure Route system, in which the EGR is taken from the exhaust manifold to the intake manifold. One of the two High Pressure Route EGR systems is with back pressure valve located at downstream of the turbine and the other uses a variable geometry(VG) turbocharger. It was found that the High Pressure Route EGR system using VG turbocharger was the most effective and practical. With this method the EGR area could be enlarged and NOx reduced by 22% without increase in smoke or fuel consumption while maintaining an adequate excess air ratio.
Technical Paper

Analysis of Vehicle Wind Throb Using CFD and Flow Visualization

1997-02-24
970407
Passenger cars with sunroofs sometimes experience a low frequency pulsation noise called “wind throb” when traveling with the roof open. This “wind throb” should be suppressed because it is an unpleasant noise which can adversely affect the acoustic environment inside a car. In this paper, 3-dimensional numerical flow analysis is applied around a car body to investigate the wind throb phenomenon. The computational scheme and the modeling method of the car body is first described. A flow visualization test in a water tunnel was completed for the simple car body shape to compare against the numerical procedure. The numerical and the visualized results compared well and the numerical simulation method employed was considered to be a reliable tool to analyze the wind throb phenomenon. Calculated results of pressure and vorticity distribution in the sunroof opening were analyzed with the spectrum of pressure fluctuation at the sunroof opening with and without a deflector.
Technical Paper

Reduction of Exhaust Emission with New Water Injection System in a Diesel Engine

1996-02-01
960033
In this study a new water injection system was applied to an 11 liter naturally aspirated DI diesel engine in order to reduce exhaust emissions. In this system, the water and fuel were arranged in the injection nozzle during the time between injections as fuel, water and then fuel. The fuel and water were then injected into the cylinder in that order. The tests were conducted at several engine operating conditions from the Japanese 13 mode test cycle to clarify effects of water injection on exhaust emissions and fuel consumption. The results showed that NOx reduction was directly proportional to the relative amount of water injection, regardless of engine speed and load. By using the optimal relative amount of water injection at each engine operating condition, total NOx and particulate matter (PM) in the Japanese 13 mode test cycle were reduced by 50% and 25%, respectively, without a fuel consumption penalty.
X